Question
Question: Evaluate $\int xe^{3x} dx$ using integration by parts...
Evaluate ∫xe3xdx using integration by parts

A
xe3x+32+C
B
xe3x−32+C
C
3x+32+C
D
3x−32+C
Answer
3xe3x−9e3x+C (None of the options provided are correct)
Explanation
Solution
To evaluate ∫xe3xdx using integration by parts, use the formula ∫udv=uv−∫vdu.
Let u=x and dv=e3xdx.
Then du=dx and v=∫e3xdx=3e3x.
Substitute these into the formula:
∫xe3xdx=x(3e3x)−∫(3e3x)dx =3xe3x−31∫e3xdx =3xe3x−31(3e3x)+C =3xe3x−9e3x+C
None of the given options match this result.