Solveeit Logo

Question

Question: Evaluate $\int xe^{3x} dx$ using integration by parts...

Evaluate xe3xdx\int xe^{3x} dx using integration by parts

A

xe3x+23+Cxe^{3x} + \frac{2}{3} + C

B

xe3x23+Cxe^{3x} - \frac{2}{3} + C

C

x3+23+C\frac{x}{3} + \frac{2}{3} + C

D

x323+C\frac{x}{3} - \frac{2}{3} + C

Answer

xe3x3e3x9+C\frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C (None of the options provided are correct)

Explanation

Solution

To evaluate xe3xdx\int xe^{3x} dx using integration by parts, use the formula udv=uvvdu\int u \, dv = uv - \int v \, du.

Let u=xu = x and dv=e3xdxdv = e^{3x} dx.
Then du=dxdu = dx and v=e3xdx=e3x3v = \int e^{3x} dx = \frac{e^{3x}}{3}.

Substitute these into the formula:

xe3xdx=x(e3x3)(e3x3)dx\int xe^{3x} dx = x \left(\frac{e^{3x}}{3}\right) - \int \left(\frac{e^{3x}}{3}\right) dx =xe3x313e3xdx= \frac{xe^{3x}}{3} - \frac{1}{3} \int e^{3x} dx =xe3x313(e3x3)+C= \frac{xe^{3x}}{3} - \frac{1}{3} \left(\frac{e^{3x}}{3}\right) + C =xe3x3e3x9+C= \frac{xe^{3x}}{3} - \frac{e^{3x}}{9} + C

None of the given options match this result.