Question
Question: The value of the integral $\int_{-\pi}^{\pi} (\sin x + 2 \sin 2x + 3 \sin 3x + 4 \sin 4x + 5 \sin 5x...
The value of the integral ∫−ππ(sinx+2sin2x+3sin3x+4sin4x+5sin5x)2dx is

A
101 π
B
100 π
C
55 π
D
50 π
Answer
55 \pi
Explanation
Solution
The integral involves the square of a sum of sine functions. Due to the orthogonality property of sine functions over the interval [−π,π], the integral of product terms sin(nx)sin(mx) for n=m is zero. The integral of squared terms sin2(nx) evaluates to π. Thus, the integral simplifies to the sum of n2×π for n=1 to 5.
∫−ππ(∑n=15nsinnx)2dx=∑n=15n2∫−ππsin2nxdx=∑n=15n2π=π(12+22+32+42+52)=π(1+4+9+16+25)=55π.