Solveeit Logo

Question

Question: The value of the integral $\int_{-\pi}^{\pi} (\sin x + 2 \sin 2x + 3 \sin 3x + 4 \sin 4x + 5 \sin 5x...

The value of the integral ππ(sinx+2sin2x+3sin3x+4sin4x+5sin5x)2dx\int_{-\pi}^{\pi} (\sin x + 2 \sin 2x + 3 \sin 3x + 4 \sin 4x + 5 \sin 5x)^2 dx is

A

101 π\pi

B

100 π\pi

C

55 π\pi

D

50 π\pi

Answer

55 \pi

Explanation

Solution

The integral involves the square of a sum of sine functions. Due to the orthogonality property of sine functions over the interval [π,π][-\pi, \pi], the integral of product terms sin(nx)sin(mx)\sin(nx)\sin(mx) for nmn \neq m is zero. The integral of squared terms sin2(nx)\sin^2(nx) evaluates to π\pi. Thus, the integral simplifies to the sum of n2×πn^2 \times \pi for n=1n=1 to 55.

ππ(n=15nsinnx)2dx=n=15n2ππsin2nxdx=n=15n2π=π(12+22+32+42+52)=π(1+4+9+16+25)=55π\int_{-\pi}^{\pi} \left( \sum_{n=1}^{5} n \sin nx \right)^2 dx = \sum_{n=1}^{5} n^2 \int_{-\pi}^{\pi} \sin^2 nx dx = \sum_{n=1}^{5} n^2 \pi = \pi (1^2+2^2+3^2+4^2+5^2) = \pi (1+4+9+16+25) = 55\pi.