Solveeit Logo

Question

Question: A Particle Moves with Constant $acc^n$ At t=0, Speed = v t=1, Speed = v/2 t-2, speed = v/4 What is...

A Particle Moves with Constant accnacc^n

At t=0, Speed = v t=1, Speed = v/2 t-2, speed = v/4

What is speed at t = 3s ?

Answer

7v4\frac{\sqrt{7}v}{4}

Explanation

Solution

The problem states that a particle moves with constant acceleration and provides its speed at three different times. Let V(t)\vec{V}(t) be the velocity of the particle at time tt, and a\vec{a} be the constant acceleration. The initial velocity at t=0t=0 is V0\vec{V_0}.

The velocity at time tt is given by: V(t)=V0+at\vec{V}(t) = \vec{V_0} + \vec{a}t

The speed is the magnitude of the velocity, i.e., V(t)|\vec{V}(t)|. We are given:

  1. At t=0t=0: V0=v|\vec{V_0}| = v
  2. At t=1t=1: V0+a=v/2|\vec{V_0} + \vec{a}| = v/2
  3. At t=2t=2: V0+2a=v/4|\vec{V_0} + 2\vec{a}| = v/4

Let's square these equations to work with dot products, which are easier for vector algebra:

  1. V02=V0V0=v2|\vec{V_0}|^2 = \vec{V_0} \cdot \vec{V_0} = v^2
  2. V0+a2=(V0+a)(V0+a)=V0V0+2V0a+aa=(v/2)2=v2/4|\vec{V_0} + \vec{a}|^2 = (\vec{V_0} + \vec{a}) \cdot (\vec{V_0} + \vec{a}) = \vec{V_0} \cdot \vec{V_0} + 2\vec{V_0} \cdot \vec{a} + \vec{a} \cdot \vec{a} = (v/2)^2 = v^2/4
  3. V0+2a2=(V0+2a)(V0+2a)=V0V0+4V0a+4aa=(v/4)2=v2/16|\vec{V_0} + 2\vec{a}|^2 = (\vec{V_0} + 2\vec{a}) \cdot (\vec{V_0} + 2\vec{a}) = \vec{V_0} \cdot \vec{V_0} + 4\vec{V_0} \cdot \vec{a} + 4\vec{a} \cdot \vec{a} = (v/4)^2 = v^2/16

Substitute V0V0=v2\vec{V_0} \cdot \vec{V_0} = v^2 into equations (2) and (3): From (2): v2+2V0a+a2=v2/4v^2 + 2\vec{V_0} \cdot \vec{a} + |\vec{a}|^2 = v^2/4 2V0a+a2=v2/4v2=3v2/42\vec{V_0} \cdot \vec{a} + |\vec{a}|^2 = v^2/4 - v^2 = -3v^2/4 (Equation A)

From (3): v2+4V0a+4a2=v2/16v^2 + 4\vec{V_0} \cdot \vec{a} + 4|\vec{a}|^2 = v^2/16 4V0a+4a2=v2/16v2=15v2/164\vec{V_0} \cdot \vec{a} + 4|\vec{a}|^2 = v^2/16 - v^2 = -15v^2/16 (Equation B)

Let X=V0aX = \vec{V_0} \cdot \vec{a} and Y=a2Y = |\vec{a}|^2. We have a system of linear equations: A: 2X+Y=3v2/42X + Y = -3v^2/4 B: 4X+4Y=15v2/164X + 4Y = -15v^2/16

Multiply Equation A by 4: 8X+4Y=3v28X + 4Y = -3v^2 (Equation C)

Subtract Equation B from Equation C: (8X+4Y)(4X+4Y)=3v2(15v2/16)(8X + 4Y) - (4X + 4Y) = -3v^2 - (-15v^2/16) 4X=48v2/16+15v2/164X = -48v^2/16 + 15v^2/16 4X=33v2/164X = -33v^2/16 X=33v2/64X = -33v^2/64

Now substitute XX back into Equation A to find YY: 2(33v2/64)+Y=3v2/42(-33v^2/64) + Y = -3v^2/4 33v2/32+Y=3v2/4-33v^2/32 + Y = -3v^2/4 Y=3v2/4+33v2/32Y = -3v^2/4 + 33v^2/32 Y=24v2/32+33v2/32Y = -24v^2/32 + 33v^2/32 Y=9v2/32Y = 9v^2/32

So, we have V0a=33v2/64\vec{V_0} \cdot \vec{a} = -33v^2/64 and a2=9v2/32|\vec{a}|^2 = 9v^2/32.

Now, we need to find the speed at t=3t=3s. Let this be S3S_3. S3=V0+3aS_3 = |\vec{V_0} + 3\vec{a}| S32=V0+3a2=(V0+3a)(V0+3a)S_3^2 = |\vec{V_0} + 3\vec{a}|^2 = (\vec{V_0} + 3\vec{a}) \cdot (\vec{V_0} + 3\vec{a}) S32=V0V0+6V0a+9aaS_3^2 = \vec{V_0} \cdot \vec{V_0} + 6\vec{V_0} \cdot \vec{a} + 9\vec{a} \cdot \vec{a} S32=v2+6X+9YS_3^2 = v^2 + 6X + 9Y

Substitute the values of XX and YY: S32=v2+6(33v2/64)+9(9v2/32)S_3^2 = v^2 + 6(-33v^2/64) + 9(9v^2/32) S32=v2198v2/64+81v2/32S_3^2 = v^2 - 198v^2/64 + 81v^2/32 S32=v299v2/32+81v2/32S_3^2 = v^2 - 99v^2/32 + 81v^2/32 S32=v2+(99+81)v2/32S_3^2 = v^2 + (-99 + 81)v^2/32 S32=v218v2/32S_3^2 = v^2 - 18v^2/32 S32=v29v2/16S_3^2 = v^2 - 9v^2/16 S32=(16v29v2)/16S_3^2 = (16v^2 - 9v^2)/16 S32=7v2/16S_3^2 = 7v^2/16

Finally, take the square root to find the speed: S3=7v2/16=7v4S_3 = \sqrt{7v^2/16} = \frac{\sqrt{7}v}{4}

The final answer is 7v4\boxed{\frac{\sqrt{7}v}{4}}.

Explanation:

  1. Recognize that the problem implies motion in 2D or 3D because a 1D constant acceleration scenario leads to contradictions (specifically, v=0v=0) unless v=0v=0.
  2. Use the vector kinematic equation V(t)=V0+at\vec{V}(t) = \vec{V_0} + \vec{a}t.
  3. Square the given speed equations to eliminate square roots and work with dot products:
    • V02=v2|\vec{V_0}|^2 = v^2
    • V0+a2=v2/4    V0V0+2V0a+a2=v2/4|\vec{V_0} + \vec{a}|^2 = v^2/4 \implies \vec{V_0} \cdot \vec{V_0} + 2\vec{V_0} \cdot \vec{a} + |\vec{a}|^2 = v^2/4
    • V0+2a2=v2/16    V0V0+4V0a+4a2=v2/16|\vec{V_0} + 2\vec{a}|^2 = v^2/16 \implies \vec{V_0} \cdot \vec{V_0} + 4\vec{V_0} \cdot \vec{a} + 4|\vec{a}|^2 = v^2/16
  4. Substitute v2v^2 for V0V0\vec{V_0} \cdot \vec{V_0} and simplify the equations into a system of two linear equations in terms of X=V0aX = \vec{V_0} \cdot \vec{a} and Y=a2Y = |\vec{a}|^2.
  5. Solve the system of equations for XX and YY.
  6. Calculate the square of the speed at t=3t=3s using the formula S32=V0+3a2=v2+6X+9YS_3^2 = |\vec{V_0} + 3\vec{a}|^2 = v^2 + 6X + 9Y.
  7. Take the square root of the result to find the speed.