Solveeit Logo

Question

Question: If $\cos^{-1}\left(\frac{y}{b}\right)=\log\left(\frac{x}{n}\right)^n$ prove that $x^2y_{n+2}+(2n+1)x...

If cos1(yb)=log(xn)n\cos^{-1}\left(\frac{y}{b}\right)=\log\left(\frac{x}{n}\right)^n prove that x2yn+2+(2n+1)xyn+1+2n2yn=0x^2y_{n+2}+(2n+1)xy_{n+1}+2n^2y_n=0

Answer

The proof involves differentiating the given relation twice to obtain a second-order differential equation and then applying Leibniz's rule for differentiation nn times to arrive at the desired equation.

Explanation

Solution

The given relation is: cos1(yb)=nlog(xn)\cos^{-1}\left(\frac{y}{b}\right) = n \log\left(\frac{x}{n}\right)

Differentiating with respect to xx: 11(y/b)21bdydx=n1x/n1n\frac{-1}{\sqrt{1 - (y/b)^2}} \cdot \frac{1}{b} \frac{dy}{dx} = n \cdot \frac{1}{x/n} \cdot \frac{1}{n} bb2y21by=nx1n\frac{-b}{\sqrt{b^2 - y^2}} \cdot \frac{1}{b} y' = \frac{n}{x} \cdot \frac{1}{n} yb2y2=1x\frac{-y'}{\sqrt{b^2 - y^2}} = \frac{1}{x} xy=b2y2x y' = -\sqrt{b^2 - y^2}

Squaring both sides: x2(y)2=b2y2x^2 (y')^2 = b^2 - y^2

Differentiating again with respect to xx: 2x(y)2+x22yy=2yy2x (y')^2 + x^2 \cdot 2y' y'' = -2y y' Dividing by 2y2y' (assuming y0y' \neq 0): xy+x2y=yx y' + x^2 y'' = -y x2y+xy+y=0x^2 y'' + x y' + y = 0

Let's recheck the first derivative step. yb2y2=nx\frac{-y'}{\sqrt{b^2 - y^2}} = \frac{n}{x} xy=nb2y2x y' = -n \sqrt{b^2 - y^2} Squaring both sides: x2(y)2=n2(b2y2)x^2 (y')^2 = n^2 (b^2 - y^2) Differentiating with respect to xx: 2x(y)2+x22yy=n2(2yy)2x (y')^2 + x^2 \cdot 2y' y'' = n^2 (-2y y') Dividing by 2y2y': xy+x2y=n2yx y' + x^2 y'' = -n^2 y x2y+xy+n2y=0x^2 y'' + x y' + n^2 y = 0

Now, differentiate this equation nn times using Leibniz's rule: Dn(uv)=k=0n(nk)u(k)v(nk)D^n(uv) = \sum_{k=0}^n \binom{n}{k} u^{(k)} v^{(n-k)}. Let yk=dkydxky_k = \frac{d^k y}{dx^k}. Dn(x2y2)+Dn(xy1)+Dn(n2y)=0D^n(x^2 y_2) + D^n(x y_1) + D^n(n^2 y) = 0

  1. Dn(x2y2)=(n0)x2yn+2+(n1)(2x)yn+1+(n2)(2)ynD^n(x^2 y_2) = \binom{n}{0} x^2 y_{n+2} + \binom{n}{1} (2x) y_{n+1} + \binom{n}{2} (2) y_n =x2yn+2+2nxyn+1+n(n1)yn= x^2 y_{n+2} + 2nx y_{n+1} + n(n-1) y_n

  2. Dn(xy1)=(n0)xyn+1+(n1)(1)ynD^n(x y_1) = \binom{n}{0} x y_{n+1} + \binom{n}{1} (1) y_n =xyn+1+nyn= x y_{n+1} + n y_n

  3. Dn(n2y)=n2ynD^n(n^2 y) = n^2 y_n

Summing these: (x2yn+2+2nxyn+1+n(n1)yn)+(xyn+1+nyn)+n2yn=0(x^2 y_{n+2} + 2nx y_{n+1} + n(n-1) y_n) + (x y_{n+1} + n y_n) + n^2 y_n = 0 x2yn+2+(2nx+x)yn+1+(n2n+n+n2)yn=0x^2 y_{n+2} + (2nx + x) y_{n+1} + (n^2 - n + n + n^2) y_n = 0 x2yn+2+(2n+1)xyn+1+(2n2)yn=0x^2 y_{n+2} + (2n+1)x y_{n+1} + (2n^2) y_n = 0 This proves the required relation.