Question
Mathematics Question on Integration by Parts
∫01[f(x)g′′(x)−f′′(x)g(x)] dx is equal to : [Given f(0) = g(0) = 0]
A
f (1) g(1) -f(1) g??l)
B
f(l) g??l) + (l) f??(l)
C
f (l) g??l) - f??l) g(l)
D
none of these
Answer
f (l) g??l) - f??l) g(l)
Explanation
Solution
Integrating by parts. ∫f(x)g′′(x)dx−∫f′′(x)g(x)dx =f(x)g′(x)−∫f′(x)g′(x)dx −f′(x)g(x)+∫f′(x)g′(x)dx =f(x)g′(x)−f′(x)g(x) Hence,∫01f(x)g′′(x)dx−∫01f′′(x)g(x)dx =f(1)g′(1)−f′(1)g(1)−f(0)g′(0)+f′(0)g(0) f(1)g′(1)−f′(1)g(1)