Solveeit Logo

Question

Mathematics Question on Integration by Parts

01[f(x)g(x)f(x)g(x)]\quad\int_{0}^{1} \left[f \left(x\right)g'' \left(x\right)-f''\left(x\right)g \left(x\right)\right] dx is equal to : [Given f(0) = g(0) = 0]

A

f (1) g(1) -f(1) g??l)

B

f(l) g??l) + (l) f??(l)

C

f (l) g??l) - f??l) g(l)

D

none of these

Answer

f (l) g??l) - f??l) g(l)

Explanation

Solution

Integrating by parts. f(x)g(x)dxf(x)g(x)dx\quad\int f \left(x\right) g'' \left(x\right)dx-\int f''\left(x\right)g\left(x\right)dx =f(x)g(x)f(x)g(x)dx=f \left(x\right)g'\left(x\right)-\int f '\left(x\right)g'\left(x\right)dx f(x)g(x)+f(x)g(x)dx-f '\left(x\right)g\left(x\right)+\int f '\left(x\right)g'\left(x\right) dx =f(x)g(x)f(x)g(x)=f\left(x\right)g'\left(x\right)-f'\left(x\right)g\left(x\right) Hence,01f(x)g(x)dx01f(x)g(x)dxHence,\, \int_{0}^{1}f \left(x\right)g''\left(x\right)dx-\int_{0}^{1}f''\left(x\right)g\left(x\right) dx =f(1)g(1)f(1)g(1)f(0)g(0)+f(0)g(0)=f\left(1\right)g'\left(1\right)-f'\left(1\right)g\left(1\right)-f \left(0\right)g'\left(0\right)+f'\left(0\right)g\left(0\right) f(1)g(1)f(1)g(1)f\left(1\right)g'\left(1\right)-f'\left(1\right)g\left(1\right)