Solveeit Logo

Question

Question: \(q_{1},\mspace{6mu} q_{2},\mspace{6mu} q_{3}\) and\(q_{4}\) are point charges located at points as ...

q1,6muq2,6muq3q_{1},\mspace{6mu} q_{2},\mspace{6mu} q_{3} andq4q_{4} are point charges located at points as shown in the figure and SS is a spherical Gaussian surface of radius R. Which of the following is true according to the Gauss’s law

A

s(E1+E2+E3).dA=q1+q2+q32ε0\oint_{s}^{}{({\overrightarrow{E}}_{1} + {\overrightarrow{E}}_{2} + {\overrightarrow{E}}_{3}).d\overrightarrow{A}} = \frac{q_{1} + q_{2} + q_{3}}{2\varepsilon_{0}}

B

s(E1+E2+E3).dA=(q1+q2+q3)ε0\oint_{s}^{}{({\overrightarrow{E}}_{1} + {\overrightarrow{E}}_{2} + {\overrightarrow{E}}_{3}).d\overrightarrow{A}} = \frac{(q_{1} + q_{2} + q_{3})}{\varepsilon_{0}}

C

s(E1+E2+E3).dA=(q1+q2+q3+q4)ε0\oint_{s}^{}{({\overrightarrow{E}}_{1} + {\overrightarrow{E}}_{2} + {\overrightarrow{E}}_{3}).d\overrightarrow{A}} = \frac{(q_{1} + q_{2} + q_{3} + q_{4})}{\varepsilon_{0}}

D

None of the above

Answer

s(E1+E2+E3).dA=(q1+q2+q3)ε0\oint_{s}^{}{({\overrightarrow{E}}_{1} + {\overrightarrow{E}}_{2} + {\overrightarrow{E}}_{3}).d\overrightarrow{A}} = \frac{(q_{1} + q_{2} + q_{3})}{\varepsilon_{0}}

Explanation

Solution

By using EdA=1ε0(Qenc)\int_{}^{}{\overset{\rightarrow}{E} \cdot \overset{\rightarrow}{dA}} = \frac{1}{\varepsilon_{0}}(Q_{enc})