Solveeit Logo

Question

Question: Let y(x) be the solution of the differential equation $$x^2\frac{dy}{dx}+xy = x^2+y^2, \quad x>\fra...

Let y(x) be the solution of the differential equation

x2dydx+xy=x2+y2,x>1e,x^2\frac{dy}{dx}+xy = x^2+y^2, \quad x>\frac{1}{e},

satisfying y(1) = 0. Then the value of 2(y(e))2y(e2)2\frac{(y(e))^2}{y(e^2)} is ______.

Answer

3/4

Explanation

Solution

The given differential equation is x2dydx+xy=x2+y2x^2\frac{dy}{dx}+xy = x^2+y^2. Divide by x2x^2 (since x>1/e>0x > 1/e > 0, x20x^2 \neq 0): dydx+yx=1+y2x2\frac{dy}{dx} + \frac{y}{x} = 1 + \frac{y^2}{x^2} dydx=1yx+(yx)2\frac{dy}{dx} = 1 - \frac{y}{x} + \left(\frac{y}{x}\right)^2. This is a homogeneous differential equation. Let v=yxv = \frac{y}{x}. Then y=vxy = vx, and dydx=v+xdvdx\frac{dy}{dx} = v + x\frac{dv}{dx}. Substituting this into the equation: v+xdvdx=1v+v2v + x\frac{dv}{dx} = 1 - v + v^2 xdvdx=v22v+1x\frac{dv}{dx} = v^2 - 2v + 1 xdvdx=(v1)2x\frac{dv}{dx} = (v-1)^2

This is a separable differential equation. dv(v1)2=dxx\frac{dv}{(v-1)^2} = \frac{dx}{x} (assuming v1v \neq 1)

Integrate both sides: dv(v1)2=dxx\int \frac{dv}{(v-1)^2} = \int \frac{dx}{x} 1v1=lnx+C-\frac{1}{v-1} = \ln|x| + C Since x>1/e>0x > 1/e > 0, x=x|x| = x. 1v1=lnx+C-\frac{1}{v-1} = \ln x + C

Substitute back v=y/xv = y/x: 1y/x1=lnx+C-\frac{1}{y/x - 1} = \ln x + C 1(yx)/x=lnx+C-\frac{1}{(y-x)/x} = \ln x + C xyx=lnx+C-\frac{x}{y-x} = \ln x + C xxy=lnx+C\frac{x}{x-y} = \ln x + C

Use the initial condition y(1)=0y(1)=0: Substitute x=1x=1 and y=0y=0: 110=ln1+C\frac{1}{1-0} = \ln 1 + C 1=0+C    C=11 = 0 + C \implies C = 1

The particular solution is: xxy=lnx+1\frac{x}{x-y} = \ln x + 1

We need to find y(e)y(e) and y(e2)y(e^2). For y(e)y(e), substitute x=ex=e: eey(e)=lne+1=1+1=2\frac{e}{e-y(e)} = \ln e + 1 = 1 + 1 = 2 e=2(ey(e))e = 2(e-y(e)) e=2e2y(e)e = 2e - 2y(e) 2y(e)=2ee=e2y(e) = 2e - e = e y(e)=e/2y(e) = e/2

For y(e2)y(e^2), substitute x=e2x=e^2: e2e2y(e2)=ln(e2)+1=2lne+1=2(1)+1=3\frac{e^2}{e^2-y(e^2)} = \ln(e^2) + 1 = 2\ln e + 1 = 2(1) + 1 = 3 e2e2y(e2)=3\frac{e^2}{e^2-y(e^2)} = 3 e2=3(e2y(e2))e^2 = 3(e^2-y(e^2)) e2=3e23y(e2)e^2 = 3e^2 - 3y(e^2) 3y(e2)=3e2e2=2e23y(e^2) = 3e^2 - e^2 = 2e^2 y(e2)=2e23y(e^2) = \frac{2e^2}{3}

Now calculate the expression 2(y(e))2y(e2)2\frac{(y(e))^2}{y(e^2)}: (y(e))2=(e/2)2=e2/4(y(e))^2 = (e/2)^2 = e^2/4 2(y(e))2y(e2)=2×e2/42e2/32\frac{(y(e))^2}{y(e^2)} = 2 \times \frac{e^2/4}{2e^2/3} =2×e24×32e2= 2 \times \frac{e^2}{4} \times \frac{3}{2e^2} =2×38= 2 \times \frac{3}{8} =68=34= \frac{6}{8} = \frac{3}{4}

The value of 2(y(e))2y(e2)2\frac{(y(e))^2}{y(e^2)} is 3/43/4.