Question
Question: Let y(x) be the solution of the differential equation $$x^2\frac{dy}{dx}+xy = x^2+y^2, \quad x>\fra...
Let y(x) be the solution of the differential equation
x2dxdy+xy=x2+y2,x>e1,
satisfying y(1) = 0. Then the value of 2y(e2)(y(e))2 is ______.

3/4
Solution
The given differential equation is x2dxdy+xy=x2+y2. Divide by x2 (since x>1/e>0, x2=0): dxdy+xy=1+x2y2 dxdy=1−xy+(xy)2. This is a homogeneous differential equation. Let v=xy. Then y=vx, and dxdy=v+xdxdv. Substituting this into the equation: v+xdxdv=1−v+v2 xdxdv=v2−2v+1 xdxdv=(v−1)2
This is a separable differential equation. (v−1)2dv=xdx (assuming v=1)
Integrate both sides: ∫(v−1)2dv=∫xdx −v−11=ln∣x∣+C Since x>1/e>0, ∣x∣=x. −v−11=lnx+C
Substitute back v=y/x: −y/x−11=lnx+C −(y−x)/x1=lnx+C −y−xx=lnx+C x−yx=lnx+C
Use the initial condition y(1)=0: Substitute x=1 and y=0: 1−01=ln1+C 1=0+C⟹C=1
The particular solution is: x−yx=lnx+1
We need to find y(e) and y(e2). For y(e), substitute x=e: e−y(e)e=lne+1=1+1=2 e=2(e−y(e)) e=2e−2y(e) 2y(e)=2e−e=e y(e)=e/2
For y(e2), substitute x=e2: e2−y(e2)e2=ln(e2)+1=2lne+1=2(1)+1=3 e2−y(e2)e2=3 e2=3(e2−y(e2)) e2=3e2−3y(e2) 3y(e2)=3e2−e2=2e2 y(e2)=32e2
Now calculate the expression 2y(e2)(y(e))2: (y(e))2=(e/2)2=e2/4 2y(e2)(y(e))2=2×2e2/3e2/4 =2×4e2×2e23 =2×83 =86=43
The value of 2y(e2)(y(e))2 is 3/4.