Solveeit Logo

Question

Question: Let $P(\frac{2\sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}})$, $Q$, $R$ and $S$ be four points on the elli...

Let P(237,67)P(\frac{2\sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}), QQ, RR and SS be four points on the ellipse 9x2+4y2=369x^2+4y^2=36. Let PQPQ and RSRS be mutually perpendicular and pass through the origin. If 1(PQ)2+1(RS)2=pq\frac{1}{(PQ)^2} + \frac{1}{(RS)^2} = \frac{p}{q}, where pp and qq are coprime, then p+qp+q is equal to

A

147

B

143

C

137

D

157

Answer

157

Explanation

Solution

Solution Explanation

  1. Rewrite the Ellipse
    The ellipse is given by
9x2+4y2=36x24+y29=1.9x^2+4y^2=36 \quad\Rightarrow\quad \frac{x^2}{4}+\frac{y^2}{9}=1.
  1. Chord through P
    Given P(237,67)P\left(\frac{2\sqrt{3}}{\sqrt{7}},\,\frac{6}{\sqrt{7}}\right). Its line through the origin has slope
m=6/723/7=3.m=\frac{6/\sqrt{7}}{2\sqrt{3}/\sqrt{7}}=\sqrt{3}.

Substitute y=3xy=\sqrt{3}x in the ellipse:

x24+3x29=x24+x23=7x212=1x2=127.\frac{x^2}{4}+\frac{3x^2}{9}=\frac{x^2}{4}+\frac{x^2}{3}=\frac{7x^2}{12}=1\quad\Rightarrow\quad x^2=\frac{12}{7}.

Thus, length PQ=2127=837PQ= 2\sqrt{\frac{12}{7}}=\frac{8\sqrt{3}}{\sqrt{7}} and

(PQ)2=19271(PQ)2=7192.(PQ)^2=\frac{192}{7}\quad\Rightarrow\quad \frac{1}{(PQ)^2}=\frac{7}{192}.
  1. Perpendicular Chord RS
    Since RSRS is perpendicular to PQPQ, its slope m=13m'=-\frac{1}{\sqrt{3}}. Using y=13xy=-\frac{1}{\sqrt{3}}x in the ellipse:
x24+x2/39=x24+x227=31x2108=1x2=10831.\frac{x^2}{4}+\frac{x^2/3}{9}=\frac{x^2}{4}+\frac{x^2}{27}=\frac{31x^2}{108}=1\quad\Rightarrow\quad x^2=\frac{108}{31}.

So, chord RSRS has endpoints (±10831,108313)\left(\pm\sqrt{\frac{108}{31}},\, \mp\frac{\sqrt{\frac{108}{31}}}{\sqrt{3}}\right). Its length is

RS=210831=2431,RS=2\sqrt{\frac{108}{31}}=\frac{24}{\sqrt{31}},

giving

(RS)2=576311(RS)2=31576.(RS)^2=\frac{576}{31}\quad\Rightarrow\quad \frac{1}{(RS)^2}=\frac{31}{576}.
  1. Sum the Reciprocals
1(PQ)2+1(RS)2=7192+31576=21+31576=52576=13144.\frac{1}{(PQ)^2}+\frac{1}{(RS)^2}=\frac{7}{192}+\frac{31}{576}=\frac{21+31}{576}=\frac{52}{576}=\frac{13}{144}.

Here, p=13p=13 and q=144q=144 (coprime), so

p+q=13+144=157.p+q=13+144=157.

Answer:

157(Option 34% 157)\boxed{157}\quad \text{(Option 34\% 157)}

Subject, Chapter, and Topic:

  • Subject: Mathematics
  • Chapter: Conic Sections
  • Topic: Ellipses

Difficulty Level: Medium
Question Type: single_choice