Question
Question: If $\tan(\cot x) = \cot(\tan x)$, [where n ∈ I] then $\sin 2x =$...
If tan(cotx)=cot(tanx), [where n ∈ I] then sin2x=

A
4π(2n+1)
B
(2n+1)π4
C
4π(2n+1)
D
2π(2n−1)
Answer
(2n+1)π4
Explanation
Solution
The given equation is tan(cotx)=cot(tanx). Using the identity cotθ=tan(2π−θ), the equation becomes: tan(cotx)=tan(2π−tanx)
The general solution for tanA=tanB is A=B+nπ, where n is an integer. So, cotx=2π−tanx+nπ. Rearranging the terms, we get: cotx+tanx=2π+nπ
We know that cotx+tanx=sinxcosx+cosxsinx=sinxcosxcos2x+sin2x=sinxcosx1. Also, from the double angle formula for sine, sin(2x)=2sinxcosx, so sinxcosx=21sin(2x). Therefore, cotx+tanx=21sin(2x)1=sin(2x)2.
Equating the two expressions for cotx+tanx: sin(2x)2=2π+nπ=2π(1+2n)=2π(2n+1)
Solving for sin(2x): sin(2x)=2π(2n+1)2=π(2n+1)4