Solveeit Logo

Question

Question: If $\overline{a}$ is a vector of magnitude '2' and it is perpendicular to a unit vector $\overline{b...

If a\overline{a} is a vector of magnitude '2' and it is perpendicular to a unit vector b\overline{b} then a×(a×(a×(a×b)))|\overline{a}\times(\overline{a}\times(\overline{a}\times(\overline{a}\times\overline{b})))| is equal to

A

2

B

4

C

8

D

16

Answer

16

Explanation

Solution

Let V=a×(a×(a×(a×b))))\overline{V} = \overline{a}\times(\overline{a}\times(\overline{a}\times(\overline{a}\times\overline{b})))). We are given a=2|\overline{a}| = 2, b=1|\overline{b}| = 1, and ab=0\overline{a} \cdot \overline{b} = 0.

We can evaluate this iteratively:

  1. Let v1=a×b\overline{v}_1 = \overline{a} \times \overline{b}. Since a\overline{a} and b\overline{b} are perpendicular, v1=absin(90)=(2)(1)(1)=2|\overline{v}_1| = |\overline{a}||\overline{b}|\sin(90^\circ) = (2)(1)(1) = 2.
  2. Let v2=a×v1\overline{v}_2 = \overline{a} \times \overline{v}_1. Since a\overline{a} is perpendicular to b\overline{b}, a\overline{a} is also perpendicular to v1=a×b\overline{v}_1 = \overline{a} \times \overline{b}. Thus, v2=av1sin(90)=(2)(2)(1)=4|\overline{v}_2| = |\overline{a}||\overline{v}_1|\sin(90^\circ) = (2)(2)(1) = 4.
  3. Let v3=a×v2\overline{v}_3 = \overline{a} \times \overline{v}_2. Since a\overline{a} is perpendicular to v2\overline{v}_2, v3=av2sin(90)=(2)(4)(1)=8|\overline{v}_3| = |\overline{a}||\overline{v}_2|\sin(90^\circ) = (2)(4)(1) = 8.
  4. The final expression is a×v3|\overline{a} \times \overline{v}_3|. Since a\overline{a} is perpendicular to v3\overline{v}_3, a×v3=av3sin(90)=(2)(8)(1)=16|\overline{a} \times \overline{v}_3| = |\overline{a}||\overline{v}_3|\sin(90^\circ) = (2)(8)(1) = 16.

Alternatively, using the vector triple product formula A×(B×C)=(AC)B(AB)C\overline{A} \times (\overline{B} \times \overline{C}) = (\overline{A} \cdot \overline{C})\overline{B} - (\overline{A} \cdot \overline{B})\overline{C}: Let X=a×b\overline{X} = \overline{a} \times \overline{b}. Since ab=0\overline{a} \cdot \overline{b} = 0, X\overline{X} is perpendicular to a\overline{a}. X=2|\overline{X}| = 2. a×X=a×(a×b)=(ab)a(aa)b=(0)aa2b=4b\overline{a} \times \overline{X} = \overline{a} \times (\overline{a} \times \overline{b}) = (\overline{a} \cdot \overline{b})\overline{a} - (\overline{a} \cdot \overline{a})\overline{b} = (0)\overline{a} - |\overline{a}|^2 \overline{b} = -4\overline{b}. Let Y=4b\overline{Y} = -4\overline{b}. Y=4b=4(1)=4|\overline{Y}| = |-4||\overline{b}| = 4(1) = 4. Note Y\overline{Y} is perpendicular to a\overline{a} since a(4b)=4(ab)=0\overline{a} \cdot (-4\overline{b}) = -4(\overline{a} \cdot \overline{b}) = 0. Next, a×Y=a×(4b)=4(a×b)=4X\overline{a} \times \overline{Y} = \overline{a} \times (-4\overline{b}) = -4(\overline{a} \times \overline{b}) = -4\overline{X}. Let Z=4X\overline{Z} = -4\overline{X}. Z=4X=4(2)=8|\overline{Z}| = |-4||\overline{X}| = 4(2) = 8. Note Z\overline{Z} is perpendicular to a\overline{a} since a(4X)=4(aX)=0\overline{a} \cdot (-4\overline{X}) = -4(\overline{a} \cdot \overline{X}) = 0. Finally, we need a×Z|\overline{a} \times \overline{Z}|. Since a\overline{a} is perpendicular to Z\overline{Z}, a×Z=aZsin(90)=(2)(8)(1)=16|\overline{a} \times \overline{Z}| = |\overline{a}| |\overline{Z}| \sin(90^\circ) = (2)(8)(1) = 16.