Solveeit Logo

Question

Question: If $i = \sqrt{-1}$ and $\left(1+\frac{1}{1^2}\right)\left(1+\frac{1}{(1+i)^2}\right)\left(1+\frac{1}...

If i=1i = \sqrt{-1} and (1+112)(1+1(1+i)2)(1+1(1+2i)2)...(1+1(1+(n1)i)2)=10+8i1+8i\left(1+\frac{1}{1^2}\right)\left(1+\frac{1}{(1+i)^2}\right)\left(1+\frac{1}{(1+2i)^2}\right)...\left(1+\frac{1}{(1+(n-1)i)^2}\right)=\frac{10+8i}{1+8i}, then n is equal to

A

7

B

8

C

9

D

11

Answer

9

Explanation

Solution

We are given

P=k=0n1(1+1(1+ki)2)=10+8i1+8i.P=\prod_{k=0}^{n-1}\left(1+\frac{1}{(1+ki)^2}\right)=\frac{10+8i}{1+8i}.

Write each term as

1+1(1+ki)2=(1+ki)2+1(1+ki)2.1+\frac{1}{(1+ki)^2}=\frac{(1+ki)^2+1}{(1+ki)^2}.

Notice that

(1+ki)2+1=(1+ki+i)(1+kii),(1+ki)^2+1=(1+ki+i)(1+ki-i),

so

P=k=0n1[1+ki+i]  k=0n1[1+kii]k=0n1(1+ki)2.P=\frac{\prod_{k=0}^{n-1}[1+ki+i]\;\prod_{k=0}^{n-1}[1+ki-i]}{\prod_{k=0}^{n-1}(1+ki)^2}.

Define

A=k=0n11+ki+i1+kiandB=k=0n11+kii1+ki.A=\prod_{k=0}^{n-1}\frac{1+ki+i}{1+ki} \quad \text{and} \quad B=\prod_{k=0}^{n-1}\frac{1+ki-i}{1+ki}.

Notice for AA the product telescopes:

A=1+1i1+0i1+2i1+i1+ni1+(n1)i=1+ni1.A=\frac{1+1\cdot i}{1+0\cdot i}\cdot\frac{1+2i}{1+i}\cdots\frac{1+ni}{1+(n-1)i}=\frac{1+ni}{1}.

Similarly, for BB we have:

B=1i111+i1+i1+2i1+(n2)i1+(n1)i=1i1+(n1)i.B=\frac{1-i}{1}\cdot\frac{1}{1+i}\cdot\frac{1+i}{1+2i}\cdots\frac{1+(n-2)i}{1+(n-1)i}=\frac{1-i}{1+(n-1)i}.

Thus,

P=AB=(1+ni)(1i)1+(n1)i.P=A\cdot B=\frac{(1+ni)(1-i)}{1+(n-1)i}.

Now compute the numerator:

(1+ni)(1i)=1(1i)+ni(1i)=1i+nini2=(1+n)+(n1)i.(1+ni)(1-i)=1\cdot(1-i)+ni\cdot(1-i)=1-i+ni-n i^2=(1+n)+(n-1)i.

Thus,

P=(1+n)+(n1)i1+(n1)i.P=\frac{(1+n)+(n-1)i}{1+(n-1)i}.

Equate this to the given value:

(1+n)+(n1)i1+(n1)i=10+8i1+8i.\frac{(1+n)+(n-1)i}{1+(n-1)i}=\frac{10+8i}{1+8i}.

Cross-multiply:

[(1+n)+(n1)i](1+8i)=(10+8i)(1+(n1)i).[(1+n)+(n-1)i](1+8i)=(10+8i)(1+(n-1)i).

Expanding the LHS:

[(1+n)+(n1)i](1+8i)=(1+n)(1+8i)+(n1)i(1+8i).[(1+n)+(n-1)i](1+8i) = (1+n)(1+8i) + (n-1)i(1+8i). =(1+n)+8(1+n)i+(n1)i+8(n1)i2.= (1+n)+8(1+n)i +(n-1)i+8(n-1)i^2.

Since i2=1i^2=-1,

=(1+n)8(n1)+[8(1+n)+(n1)]i.= (1+n) - 8(n-1) +\Big[8(1+n)+(n-1)\Big]i.

Simplify:

Real part:1+n8n+8=97n,\text{Real part}: 1+n-8n+8=9-7n, Imaginary part:8+8n+n1=7+9n.\text{Imaginary part}: 8+8n+n-1=7+9n.

Thus, LHS becomes:

(97n)+(7+9n)i.(9-7n)+(7+9n)i.

Expanding the RHS:

(10+8i)(1+(n1)i)=10(1+(n1)i)+8i(1+(n1)i).(10+8i)(1+(n-1)i)=10\cdot(1+(n-1)i)+8i\cdot(1+(n-1)i). =10+10(n1)i+8i+8(n1)i2.=10+10(n-1)i+8i+8(n-1)i^2. =108(n1)+(10(n1)+8)i(since i2=1).=10-8(n-1)+(10(n-1)+8)i \quad (\text{since } i^2=-1).

Simplify:

Real part:108n+8=188n,\text{Real part}: 10-8n+8=18-8n, Imaginary part:10n10+8=10n2.\text{Imaginary part}: 10n-10+8=10n-2.

Thus, RHS is:

(188n)+(10n2)i.(18-8n)+(10n-2)i.

Equate real and imaginary parts:

Real part:

97n=188n97n+8n=18n=9.9-7n=18-8n \quad\Rightarrow\quad 9-7n+8n=18 \quad\Rightarrow\quad n=9.

Imaginary part:

7+9n=10n27+9(9)=10(9)27+81=902,88=88.7+9n=10n-2 \quad\Rightarrow\quad 7+9(9)=10(9)-2 \quad\Rightarrow\quad 7+81=90-2,\quad 88=88.

Thus, n=9n=9.