Question
Question: If $i = \sqrt{-1}$ and $\left(1+\frac{1}{1^2}\right)\left(1+\frac{1}{(1+i)^2}\right)\left(1+\frac{1}...
If i=−1 and (1+121)(1+(1+i)21)(1+(1+2i)21)...(1+(1+(n−1)i)21)=1+8i10+8i, then n is equal to

A
7
B
8
C
9
D
11
Answer
9
Explanation
Solution
We are given
P=k=0∏n−1(1+(1+ki)21)=1+8i10+8i.Write each term as
1+(1+ki)21=(1+ki)2(1+ki)2+1.Notice that
(1+ki)2+1=(1+ki+i)(1+ki−i),so
P=∏k=0n−1(1+ki)2∏k=0n−1[1+ki+i]∏k=0n−1[1+ki−i].Define
A=k=0∏n−11+ki1+ki+iandB=k=0∏n−11+ki1+ki−i.Notice for A the product telescopes:
A=1+0⋅i1+1⋅i⋅1+i1+2i⋯1+(n−1)i1+ni=11+ni.Similarly, for B we have:
B=11−i⋅1+i1⋅1+2i1+i⋯1+(n−1)i1+(n−2)i=1+(n−1)i1−i.Thus,
P=A⋅B=1+(n−1)i(1+ni)(1−i).Now compute the numerator:
(1+ni)(1−i)=1⋅(1−i)+ni⋅(1−i)=1−i+ni−ni2=(1+n)+(n−1)i.Thus,
P=1+(n−1)i(1+n)+(n−1)i.Equate this to the given value:
1+(n−1)i(1+n)+(n−1)i=1+8i10+8i.Cross-multiply:
[(1+n)+(n−1)i](1+8i)=(10+8i)(1+(n−1)i).Expanding the LHS:
[(1+n)+(n−1)i](1+8i)=(1+n)(1+8i)+(n−1)i(1+8i). =(1+n)+8(1+n)i+(n−1)i+8(n−1)i2.Since i2=−1,
=(1+n)−8(n−1)+[8(1+n)+(n−1)]i.Simplify:
Real part:1+n−8n+8=9−7n, Imaginary part:8+8n+n−1=7+9n.Thus, LHS becomes:
(9−7n)+(7+9n)i.Expanding the RHS:
(10+8i)(1+(n−1)i)=10⋅(1+(n−1)i)+8i⋅(1+(n−1)i). =10+10(n−1)i+8i+8(n−1)i2. =10−8(n−1)+(10(n−1)+8)i(since i2=−1).Simplify:
Real part:10−8n+8=18−8n, Imaginary part:10n−10+8=10n−2.Thus, RHS is:
(18−8n)+(10n−2)i.Equate real and imaginary parts:
Real part:
9−7n=18−8n⇒9−7n+8n=18⇒n=9.Imaginary part:
7+9n=10n−2⇒7+9(9)=10(9)−2⇒7+81=90−2,88=88.Thus, n=9.