Solveeit Logo

Question

Question: If $f(x) = \begin{vmatrix} 3 & 2 & 1 \\ 6x^2 & 2x^3 & x^4 \\ 1 & a & a^2 \end{vmatrix}$, then find t...

If f(x)=3216x22x3x41aa2f(x) = \begin{vmatrix} 3 & 2 & 1 \\ 6x^2 & 2x^3 & x^4 \\ 1 & a & a^2 \end{vmatrix}, then find the value of f(1)f'(1).

A

0

B

3

C

5

D

8

Answer

0

Explanation

Solution

We are given

f(x)=3216x22x3x41aa2f(x)=\begin{vmatrix}3&2&1\\6x^2&2x^3&x^4\\1&a&a^2\end{vmatrix}.

Because only the second row depends on xx (the first and third rows are constant) the formula for differentiating a determinant (when only one row is variable) gives

f(x)=321ddx(6x2)ddx(2x3)ddx(x4)1aa2=32112x6x24x31aa2f'(x)=\begin{vmatrix}3&2&1\\ \frac{d}{dx}(6x^2) & \frac{d}{dx}(2x^3) & \frac{d}{dx}(x^4)\\1&a&a^2\end{vmatrix} =\begin{vmatrix}3&2&1\\12x&6x^2&4x^3\\1&a&a^2\end{vmatrix}.

Now, evaluating at x=1x=1 we have

f(1)=32112641aa2f'(1)=\begin{vmatrix}3&2&1\\12&6&4\\1&a&a^2\end{vmatrix}.

We now compute this 3×33\times3 determinant by expansion along the first row:

  1. The (1,1)(1,1) entry is 3. Its minor is 64aa2=6a24a\begin{vmatrix}6&4\\a&a^2\end{vmatrix}=6a^2-4a.

  2. The (1,2)(1,2) entry is 2. Its minor is 1241a2=12a24\begin{vmatrix}12&4\\1&a^2\end{vmatrix}=12a^2-4.

  3. The (1,3)(1,3) entry is 1. Its minor is 1261a=12a6\begin{vmatrix}12&6\\1&a\end{vmatrix}=12a-6.

Thus

f(1)=3(6a24a)2(12a24)+(12a6)=18a212a24a2+8+12a6=(18a224a2)+(12a+12a)+(86)=6a2+0+2=26a2.\begin{aligned} f'(1)&=3\,(6a^2-4a)-2\,(12a^2-4)+ (12a-6)\\[1mm] &= 18a^2-12a-24a^2+8+12a-6\\[1mm] &= (18a^2-24a^2)+(-12a+12a)+(8-6)\\[1mm] &= -6a^2+0+2\\[1mm] &=2-6a^2. \end{aligned}

Since the answer provided in the options is a number independent of aa (the options being 0, 3, 5, and 8), one must choose the value of the parameter aa so that 26a22-6a^2 matches one of these numbers. Notice that setting 26a2=0a2=132-6a^2=0\quad\Longrightarrow\quad a^2=\frac{1}{3}, we get the numerical answer 0.

Thus, if the constant aa is such that a2=13a^2=\frac{1}{3} (that is, a=±13a=\pm\frac{1}{\sqrt3}), then f(1)=0f'(1)=0.

Since none of the other choices yield a valid real aa, the correct option is 0.

Explanation (minimal):
Only the second row of the determinant depends on xx so
f(x)=det(32112x6x24x31aa2)f'(x)=\det\begin{pmatrix}3&2&1\\12x&6x^2&4x^3\\1&a&a^2\end{pmatrix}. At x=1x=1, expanding gives f(1)=26a2f'(1)=2-6a^2. For this to equal one of the options, we require 26a2=02-6a^2=0 (i.e. a2=13a^2=\frac{1}{3}), so that the answer is 0.