Solveeit Logo

Question

Question: If $\displaystyle \lim_{x \to 0} \frac{(1+3x+2x^2)^{1/x}-(1+3x-2x^2)^{1/x}}{x}=2ke^3$ then the value...

If limx0(1+3x+2x2)1/x(1+3x2x2)1/xx=2ke3\displaystyle \lim_{x \to 0} \frac{(1+3x+2x^2)^{1/x}-(1+3x-2x^2)^{1/x}}{x}=2ke^3 then the value of kk is

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

The limit is evaluated using the Taylor expansion of the form (1+ax+bx2)1/x=ea(1+(ba2/2)x+O(x2))(1+ax+bx^2)^{1/x} = e^a(1+(b-a^2/2)x + O(x^2)). Applying this to both terms in the numerator with a=3a=3 and b=2b=2 for the first term and b=2b=-2 for the second term, we get e3(15x/2)e^3(1 - 5x/2) and e3(113x/2)e^3(1 - 13x/2) respectively. Substituting these into the limit expression and simplifying yields 4e34e^3. Equating this to 2ke32ke^3 gives k=2k=2.