Solveeit Logo

Question

Question: (b+c-2a)x²+(c+a-2b)x+(a+b-2c)=0 are...

(b+c-2a)x²+(c+a-2b)x+(a+b-2c)=0 are

A

Rational

B

Non-real

C

Irrational

D

Equal

Answer

Rational

Explanation

Solution

Let the equation be Ax2+Bx+C=0Ax^2+Bx+C=0. The coefficients are A=b+c2aA = b+c-2a, B=c+a2bB = c+a-2b, C=a+b2cC = a+b-2c. Given a,b,cQa,b,c \in \mathbb{Q}, so A,B,CQA,B,C \in \mathbb{Q}. Sum of coefficients: A+B+C=(b+c2a)+(c+a2b)+(a+b2c)=0A+B+C = (b+c-2a)+(c+a-2b)+(a+b-2c) = 0. Since A+B+C=0A+B+C=0, x=1x=1 is a root, which is rational. The discriminant is Δ=B24AC\Delta = B^2-4AC. Since A+B+C=0A+B+C=0, B=(A+C)B = -(A+C). Δ=((A+C))24AC=(A+C)24AC=A2+2AC+C24AC=A22AC+C2=(AC)2\Delta = (-(A+C))^2 - 4AC = (A+C)^2 - 4AC = A^2+2AC+C^2-4AC = A^2-2AC+C^2 = (A-C)^2. AC=(b+c2a)(a+b2c)=3c3a=3(ca)A-C = (b+c-2a) - (a+b-2c) = 3c-3a = 3(c-a). So, Δ=(3(ca))2=9(ca)2\Delta = (3(c-a))^2 = 9(c-a)^2. Since a,cQa,c \in \mathbb{Q}, caQc-a \in \mathbb{Q}, so Δ\Delta is a square of a rational number, and Δ=3ca\sqrt{\Delta} = 3|c-a| is rational. The roots are x=B±Δ2Ax = \frac{-B \pm \sqrt{\Delta}}{2A}. Since A,B,ΔA, B, \sqrt{\Delta} are rational, the roots are rational (provided A0A \neq 0). If A=0A=0, the equation is linear Bx+C=0Bx+C=0. Since A+B+C=0A+B+C=0, if A=0A=0, then B+C=0B+C=0, so C=BC=-B. The equation becomes BxB=0Bx-B=0, or B(x1)=0B(x-1)=0. If B0B \neq 0, then x=1x=1, which is rational. If B=0B=0, then C=0C=0, meaning A=B=C=0A=B=C=0, which is a degenerate case. Thus, the roots are always rational.