Solveeit Logo

Question

Question: A solution was prepared by dissolving 2g of a non-volatile non electrolyte solid **B** in 100g of so...

A solution was prepared by dissolving 2g of a non-volatile non electrolyte solid B in 100g of solvent A. At 354K, the vapour pressure of the solution became exactly equal to the atmospheric pressure of 1.0 atm. If the molar mass of A is 80 gmol1g \text{mol}^{-1}, the molar mass (in gmol1g \text{mol}^{-1}) of solid B is ____.

[Given: Gas constant, R=8.3J K1mol1R = 8.3 \text{J K}^{-1} \text{mol}^{-1}; Vapour pressure of A at 353K = 1.0 atm, Standard entropy of vapourisation of A at 353K = 85 J K1mol1\text{J K}^{-1} \text{mol}^{-1},]

Answer

55.1

Explanation

Solution

Here's how to solve this problem using the concept of boiling point elevation:

  1. Determine the boiling point elevation (ΔTb\Delta T_b) from the boiling points of the pure solvent and the solution: ΔTb=TsolutionTsolvent=354 K353 K=1 K\Delta T_b = T_{solution} - T_{solvent} = 354 \text{ K} - 353 \text{ K} = 1 \text{ K}

  2. Calculate the molar enthalpy of vaporization (ΔHvap\Delta H_{vap}) of the solvent using the given standard entropy of vaporization (ΔSvap\Delta S_{vap}) and the boiling point of the solvent (TbT_b): ΔHvap=TbΔSvap=353 K85 J K1mol1=30005 J mol1\Delta H_{vap} = T_b \cdot \Delta S_{vap} = 353 \text{ K} \cdot 85 \text{ J K}^{-1} \text{mol}^{-1} = 30005 \text{ J mol}^{-1}

  3. Calculate the molal elevation constant (KbK_b) using the formula: Kb=RTb2MA1000ΔHvapK_b = \frac{R \cdot T_b^2 \cdot M_A}{1000 \cdot \Delta H_{vap}} Where:

    • R=8.3 J K1mol1R = 8.3 \text{ J K}^{-1} \text{mol}^{-1}
    • Tb=353 KT_b = 353 \text{ K}
    • MA=80 g mol1M_A = 80 \text{ g mol}^{-1}
    • ΔHvap=30005 J mol1\Delta H_{vap} = 30005 \text{ J mol}^{-1}

    Kb=8.3(353)2801000300052.7545 K kg mol1K_b = \frac{8.3 \cdot (353)^2 \cdot 80}{1000 \cdot 30005} \approx 2.7545 \text{ K kg mol}^{-1}

  4. Use the boiling point elevation equation to find the molality (mm) of the solution: ΔTb=Kbm\Delta T_b = K_b \cdot m 1 K=2.7545 K kg mol1m1 \text{ K} = 2.7545 \text{ K kg mol}^{-1} \cdot m m0.3630 mol kg1m \approx 0.3630 \text{ mol kg}^{-1}

  5. Use the definition of molality to calculate the molar mass of the solute (MBM_B): m=moles of solutekg of solvent=wB/MBwAm = \frac{\text{moles of solute}}{\text{kg of solvent}} = \frac{w_B / M_B}{w_A} Where:

    • wB=2 gw_B = 2 \text{ g}
    • wA=100 g=0.1 kgw_A = 100 \text{ g} = 0.1 \text{ kg}

    0.3630=2/MB0.10.3630 = \frac{2 / M_B}{0.1} MB=20.36300.155.09 g mol1M_B = \frac{2}{0.3630 \cdot 0.1} \approx 55.09 \text{ g mol}^{-1}

Therefore, the molar mass of solid B is approximately 55.1 gmol1g \text{mol}^{-1}.