Solveeit Logo

Question

Question: If \(x^2 + \frac{1}{x^2} = 51\), then what is the value of \(x^3 - \frac{1}{x^3}\)...

If x2+1x2=51x^2 + \frac{1}{x^2} = 51, then what is the value of x31x3x^3 - \frac{1}{x^3}

A

364

B

365

C

756

D

367

Answer

364

Explanation

Solution

Step 1: Let t=x+1xt = x + \frac{1}{x}.
Then

t2=x2+2+1x2        x2+1x2=t22.t^2 = x^2 + 2 + \frac{1}{x^2} \;\implies\; x^2 + \frac{1}{x^2} = t^2 - 2.

Given x2+1x2=51x^2 + \tfrac{1}{x^2} = 51, so

t22=51        t2=53        t=53.t^2 - 2 = 51 \;\implies\; t^2 = 53 \;\implies\; t = \sqrt{53}.

Step 2: Compute x1xx - \tfrac{1}{x}.

(x1x)2=x2+1x22=512=49        x1x=7.\bigl(x - \tfrac{1}{x}\bigr)^2 = x^2 + \tfrac{1}{x^2} - 2 = 51 - 2 = 49 \;\implies\; x - \tfrac{1}{x} = 7.

Step 3: Use the identity

x31x3=(x1x)(x2+1+1x2)=7×(51+1)=7×52=364.x^3 - \tfrac{1}{x^3} = \bigl(x - \tfrac{1}{x}\bigr)\,\bigl(x^2 + 1 + \tfrac{1}{x^2}\bigr) = 7 \times (51 + 1) = 7 \times 52 = 364.

Thus, the correct answer is 364.