Solveeit Logo

Question

Question: If angle between two vectors $\overline{a}$ and $\overline{b}$ is $\pi/6$, $|\overline{a}| = 1$, $|\...

If angle between two vectors a\overline{a} and b\overline{b} is π/6\pi/6, a=1|\overline{a}| = 1, b=3|\overline{b}| = \sqrt{3} such that vectors 3(a×b)3(\overline{a} \times \overline{b}) and 2(b(a.b)a)2(\overline{b} - (\overline{a}.\overline{b})\overline{a}) represent two sides of a triangle then its area in square units

A

9/4

B

3/4

C

9/2

D

3/2

Answer

9/4

Explanation

Solution

The area of a triangle with adjacent sides represented by vectors p\overline{p} and q\overline{q} is given by 12p×q\frac{1}{2} |\overline{p} \times \overline{q}|.

Given vectors a\overline{a} and b\overline{b} with: Angle θ=π/6\theta = \pi/6 a=1|\overline{a}| = 1 b=3|\overline{b}| = \sqrt{3}

First, calculate the scalar product and the magnitude of the cross product of a\overline{a} and b\overline{b}: ab=abcosθ=(1)(3)cos(π/6)=3(32)=32\overline{a} \cdot \overline{b} = |\overline{a}| |\overline{b}| \cos \theta = (1)(\sqrt{3}) \cos(\pi/6) = \sqrt{3} \left(\frac{\sqrt{3}}{2}\right) = \frac{3}{2}. a×b=absinθ=(1)(3)sin(π/6)=3(12)=32|\overline{a} \times \overline{b}| = |\overline{a}| |\overline{b}| \sin \theta = (1)(\sqrt{3}) \sin(\pi/6) = \sqrt{3} \left(\frac{1}{2}\right) = \frac{\sqrt{3}}{2}.

Let the two sides of the triangle be: p=3(a×b)\overline{p} = 3(\overline{a} \times \overline{b}) q=2(b(ab)a)\overline{q} = 2(\overline{b} - (\overline{a} \cdot \overline{b})\overline{a})

We need to calculate p×q\overline{p} \times \overline{q}: p×q=[3(a×b)]×[2(b(ab)a)]\overline{p} \times \overline{q} = [3(\overline{a} \times \overline{b})] \times [2(\overline{b} - (\overline{a} \cdot \overline{b})\overline{a})] p×q=6(a×b)×(b32a)\overline{p} \times \overline{q} = 6 (\overline{a} \times \overline{b}) \times (\overline{b} - \frac{3}{2}\overline{a}) Using the distributive property of the cross product: p×q=6[(a×b)×b(a×b)×(32a)]\overline{p} \times \overline{q} = 6 [(\overline{a} \times \overline{b}) \times \overline{b} - (\overline{a} \times \overline{b}) \times (\frac{3}{2}\overline{a})]

Using the vector triple product identity, u×(v×w)=(uw)v(uv)w\overline{u} \times (\overline{v} \times \overline{w}) = (\overline{u} \cdot \overline{w})\overline{v} - (\overline{u} \cdot \overline{v})\overline{w}: (a×b)×b=(ab)b(bb)a=32b3a(\overline{a} \times \overline{b}) \times \overline{b} = (\overline{a} \cdot \overline{b})\overline{b} - (\overline{b} \cdot \overline{b})\overline{a} = \frac{3}{2}\overline{b} - 3\overline{a}. (a×b)×a=(aa)b(ab)a=(1)b32a=b32a(\overline{a} \times \overline{b}) \times \overline{a} = (\overline{a} \cdot \overline{a})\overline{b} - (\overline{a} \cdot \overline{b})\overline{a} = (1)\overline{b} - \frac{3}{2}\overline{a} = \overline{b} - \frac{3}{2}\overline{a}.

Substitute these back into the expression for p×q\overline{p} \times \overline{q}: p×q=6[(32b3a)32(b32a)]\overline{p} \times \overline{q} = 6 \left[ \left(\frac{3}{2}\overline{b} - 3\overline{a}\right) - \frac{3}{2}\left(\overline{b} - \frac{3}{2}\overline{a}\right) \right] p×q=6[32b3a32b+94a]\overline{p} \times \overline{q} = 6 \left[ \frac{3}{2}\overline{b} - 3\overline{a} - \frac{3}{2}\overline{b} + \frac{9}{4}\overline{a} \right] p×q=6[(3+94)a]=6[34a]=92a\overline{p} \times \overline{q} = 6 \left[ \left(-3 + \frac{9}{4}\right)\overline{a} \right] = 6 \left[ -\frac{3}{4}\overline{a} \right] = -\frac{9}{2}\overline{a}.

The area of the triangle is 12p×q\frac{1}{2} |\overline{p} \times \overline{q}|: Area =1292a=12(92)a=12×92×1=94= \frac{1}{2} \left|-\frac{9}{2}\overline{a}\right| = \frac{1}{2} \left(\frac{9}{2}\right) |\overline{a}| = \frac{1}{2} \times \frac{9}{2} \times 1 = \frac{9}{4}.