Solveeit Logo

Question

Question: Let $f(\theta) = \sin \theta + \int_{-\pi/2}^{\pi/2} (\sin \theta + t\cos \theta)f(t)dt$. Then the v...

Let f(θ)=sinθ+π/2π/2(sinθ+tcosθ)f(t)dtf(\theta) = \sin \theta + \int_{-\pi/2}^{\pi/2} (\sin \theta + t\cos \theta)f(t)dt. Then the value of

0π/2f(θ)dθ\left| \int_{0}^{\pi/2} f(\theta)d\theta \right| is ___.

Answer

1

Explanation

Solution

The given integral equation is: f(θ)=sinθ+π/2π/2(sinθ+tcosθ)f(t)dtf(\theta) = \sin \theta + \int_{-\pi/2}^{\pi/2} (\sin \theta + t\cos \theta)f(t)dt

First, separate the terms inside the integral: f(θ)=sinθ+π/2π/2sinθf(t)dt+π/2π/2tcosθf(t)dtf(\theta) = \sin \theta + \int_{-\pi/2}^{\pi/2} \sin \theta f(t)dt + \int_{-\pi/2}^{\pi/2} t\cos \theta f(t)dt

Since sinθ\sin \theta and cosθ\cos \theta are constants with respect to the integration variable tt, we can take them out of the integral: f(θ)=sinθ+sinθπ/2π/2f(t)dt+cosθπ/2π/2tf(t)dtf(\theta) = \sin \theta + \sin \theta \int_{-\pi/2}^{\pi/2} f(t)dt + \cos \theta \int_{-\pi/2}^{\pi/2} t f(t)dt

Let A=π/2π/2f(t)dtA = \int_{-\pi/2}^{\pi/2} f(t)dt and B=π/2π/2tf(t)dtB = \int_{-\pi/2}^{\pi/2} t f(t)dt. Then the expression for f(θ)f(\theta) becomes: f(θ)=sinθ+Asinθ+Bcosθf(\theta) = \sin \theta + A \sin \theta + B \cos \theta f(θ)=(1+A)sinθ+Bcosθf(\theta) = (1+A) \sin \theta + B \cos \theta

Now, we need to determine the values of A and B.

Substitute f(t)f(t) back into the definition of A: A=π/2π/2((1+A)sint+Bcost)dtA = \int_{-\pi/2}^{\pi/2} ((1+A) \sin t + B \cos t) dt A=(1+A)π/2π/2sintdt+Bπ/2π/2costdtA = (1+A) \int_{-\pi/2}^{\pi/2} \sin t dt + B \int_{-\pi/2}^{\pi/2} \cos t dt

Evaluate the integrals: π/2π/2sintdt=[cost]π/2π/2=cos(π/2)(cos(π/2))=00=0\int_{-\pi/2}^{\pi/2} \sin t dt = [-\cos t]_{-\pi/2}^{\pi/2} = -\cos(\pi/2) - (-\cos(-\pi/2)) = 0 - 0 = 0. π/2π/2costdt=[sint]π/2π/2=sin(π/2)sin(π/2)=1(1)=2\int_{-\pi/2}^{\pi/2} \cos t dt = [\sin t]_{-\pi/2}^{\pi/2} = \sin(\pi/2) - \sin(-\pi/2) = 1 - (-1) = 2.

Substitute these values back into the equation for A: A=(1+A)(0)+B(2)A = (1+A)(0) + B(2) A=2BA = 2B (Equation 1)

Next, substitute f(t)f(t) back into the definition of B: B=π/2π/2t((1+A)sint+Bcost)dtB = \int_{-\pi/2}^{\pi/2} t ((1+A) \sin t + B \cos t) dt B=(1+A)π/2π/2tsintdt+Bπ/2π/2tcostdtB = (1+A) \int_{-\pi/2}^{\pi/2} t \sin t dt + B \int_{-\pi/2}^{\pi/2} t \cos t dt

Evaluate the integrals: For π/2π/2tsintdt\int_{-\pi/2}^{\pi/2} t \sin t dt: The integrand g(t)=tsintg(t) = t \sin t is an even function (g(t)=(t)sin(t)=tsint=g(t)g(-t) = (-t)\sin(-t) = t \sin t = g(t)). So, π/2π/2tsintdt=20π/2tsintdt\int_{-\pi/2}^{\pi/2} t \sin t dt = 2 \int_{0}^{\pi/2} t \sin t dt. Using integration by parts (udv=uvvdu\int u dv = uv - \int v du with u=t,dv=sintdt    du=dt,v=costu=t, dv=\sin t dt \implies du=dt, v=-\cos t): 0π/2tsintdt=[tcost(cost)dt]0π/2=[tcost+sint]0π/2\int_{0}^{\pi/2} t \sin t dt = [-t \cos t - \int (-\cos t) dt]_{0}^{\pi/2} = [-t \cos t + \sin t]_{0}^{\pi/2} =(π/2cos(π/2)+sin(π/2))(0cos0+sin0)= (-\pi/2 \cos(\pi/2) + \sin(\pi/2)) - (0 \cos 0 + \sin 0) =(0+1)(0+0)=1= (0 + 1) - (0 + 0) = 1. Thus, π/2π/2tsintdt=2(1)=2\int_{-\pi/2}^{\pi/2} t \sin t dt = 2(1) = 2.

For π/2π/2tcostdt\int_{-\pi/2}^{\pi/2} t \cos t dt: The integrand h(t)=tcosth(t) = t \cos t is an odd function (h(t)=(t)cos(t)=tcost=h(t)h(-t) = (-t)\cos(-t) = -t \cos t = -h(t)). For an odd function over a symmetric interval [a,a][-a, a], the integral is 0. So, π/2π/2tcostdt=0\int_{-\pi/2}^{\pi/2} t \cos t dt = 0.

Substitute these values back into the equation for B: B=(1+A)(2)+B(0)B = (1+A)(2) + B(0) B=2(1+A)B = 2(1+A) (Equation 2)

Now we have a system of two linear equations for A and B:

  1. A=2BA = 2B
  2. B=2(1+A)B = 2(1+A)

Substitute Equation 1 into Equation 2: B=2(1+2B)B = 2(1 + 2B) B=2+4BB = 2 + 4B 3B=23B = -2 B=2/3B = -2/3

Now find A using Equation 1: A=2B=2(2/3)=4/3A = 2B = 2(-2/3) = -4/3

So, A=4/3A = -4/3 and B=2/3B = -2/3.

Now we can write the explicit form of f(θ)f(\theta): f(θ)=(1+A)sinθ+Bcosθf(\theta) = (1+A) \sin \theta + B \cos \theta f(θ)=(14/3)sinθ+(2/3)cosθf(\theta) = (1 - 4/3) \sin \theta + (-2/3) \cos \theta f(θ)=(1/3)sinθ(2/3)cosθf(\theta) = (-1/3) \sin \theta - (2/3) \cos \theta

Finally, we need to calculate 0π/2f(θ)dθ\left| \int_{0}^{\pi/2} f(\theta)d\theta \right|: 0π/2f(θ)dθ=0π/2(13sinθ23cosθ)dθ\int_{0}^{\pi/2} f(\theta)d\theta = \int_{0}^{\pi/2} \left( -\frac{1}{3} \sin \theta - \frac{2}{3} \cos \theta \right) d\theta =130π/2sinθdθ230π/2cosθdθ= -\frac{1}{3} \int_{0}^{\pi/2} \sin \theta d\theta - \frac{2}{3} \int_{0}^{\pi/2} \cos \theta d\theta

Evaluate these definite integrals: 0π/2sinθdθ=[cosθ]0π/2=cos(π/2)(cos(0))=0(1)=1\int_{0}^{\pi/2} \sin \theta d\theta = [-\cos \theta]_{0}^{\pi/2} = -\cos(\pi/2) - (-\cos(0)) = 0 - (-1) = 1. 0π/2cosθdθ=[sinθ]0π/2=sin(π/2)sin(0)=10=1\int_{0}^{\pi/2} \cos \theta d\theta = [\sin \theta]_{0}^{\pi/2} = \sin(\pi/2) - \sin(0) = 1 - 0 = 1.

Substitute these values back: 0π/2f(θ)dθ=13(1)23(1)\int_{0}^{\pi/2} f(\theta)d\theta = -\frac{1}{3}(1) - \frac{2}{3}(1) =1323=33=1= -\frac{1}{3} - \frac{2}{3} = -\frac{3}{3} = -1.

The value of 0π/2f(θ)dθ\left| \int_{0}^{\pi/2} f(\theta)d\theta \right| is 1=1|-1| = 1.

The final answer is 1\boxed{1}.