Solveeit Logo

Question

Question: In Dumas' method for estimation of nitrogen 1 g of an organic compound gave 150 mL of nitrogen colle...

In Dumas' method for estimation of nitrogen 1 g of an organic compound gave 150 mL of nitrogen collected at 300 K temperature and 900 mm Hg pressure. The percentage composition of nitrogen in the compound is _______ % (nearest integer)

(Aqueous tension at 300 K = 15 mm Hg)

Given ...

Answer

20

Explanation

Solution

  1. Calculate the pressure of dry nitrogen (P1P_1) by subtracting the aqueous tension from the total pressure: P1=900 mm Hg15 mm Hg=885 mm HgP_1 = 900 \text{ mm Hg} - 15 \text{ mm Hg} = 885 \text{ mm Hg}.

  2. Convert the volume of nitrogen collected at the given conditions (V1=150 mLV_1 = 150 \text{ mL}, T1=300 KT_1 = 300 \text{ K}, P1=885 mm HgP_1 = 885 \text{ mm Hg}) to STP conditions (P2=760 mm HgP_2 = 760 \text{ mm Hg}, T2=273 KT_2 = 273 \text{ K}) using the combined gas law: P1V1T1=P2V2T2\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}.

    V2=P1V1T2P2T1=885 mm Hg×150 mL×273 K760 mm Hg×300 K=36230250228000 mL158.9046 mLV_2 = \frac{P_1V_1T_2}{P_2T_1} = \frac{885 \text{ mm Hg} \times 150 \text{ mL} \times 273 \text{ K}}{760 \text{ mm Hg} \times 300 \text{ K}} = \frac{36230250}{228000} \text{ mL} \approx 158.9046 \text{ mL}.

  3. Calculate the mass of nitrogen corresponding to this volume at STP. At STP, 22400 mL of N2N_2 weighs 28 g.

    Mass of N2=Volume of N2 at STPMolar volume at STP×Molar mass of N2=158.9046 mL22400 mL/mol×28 g/molN_2 = \frac{\text{Volume of } N_2 \text{ at STP}}{\text{Molar volume at STP}} \times \text{Molar mass of } N_2 = \frac{158.9046 \text{ mL}}{22400 \text{ mL/mol}} \times 28 \text{ g/mol}.

    Mass of N2=158.9046800 g0.19863 gN_2 = \frac{158.9046}{800} \text{ g} \approx 0.19863 \text{ g}.

  4. Calculate the percentage composition of nitrogen in the organic compound:

    Percentage of N=Mass of N2Mass of organic compound×100N = \frac{\text{Mass of } N_2}{\text{Mass of organic compound}} \times 100.

    Percentage of N=0.19863 g1 g×100=19.863%N = \frac{0.19863 \text{ g}}{1 \text{ g}} \times 100 = 19.863 \%.

  5. Round the percentage to the nearest integer. The nearest integer to 19.863 % is 20 %.