Solveeit Logo

Question

Question: When the temperature of a reaction A + B → C is increased from 300 K to 310 K the rate constant incr...

When the temperature of a reaction A + B → C is increased from 300 K to 310 K the rate constant increases by 12%. What is the Activation energy of the reaction?

A

192.17 kJ/mol

B

8.76 kJ/mol

C

85.69 kJ/mol

D

163.9 kJ/mol

Answer

8.76 kJ/mol

Explanation

Solution

The relationship between the rate constant (kk) and temperature (TT) is given by the Arrhenius equation. For two different temperatures T1T_1 and T2T_2, the rate constants k1k_1 and k2k_2 are related by the integrated Arrhenius equation:

ln(k2k1)=EaR(1T11T2)=EaR(T2T1T1T2)\ln\left(\frac{k_2}{k_1}\right) = \frac{E_a}{R}\left(\frac{1}{T_1} - \frac{1}{T_2}\right) = \frac{E_a}{R}\left(\frac{T_2 - T_1}{T_1 T_2}\right)

where EaE_a is the activation energy and RR is the ideal gas constant (8.314 J mol1 K18.314 \text{ J mol}^{-1}\text{ K}^{-1}).

Given:

T1=300 KT_1 = 300 \text{ K}

T2=310 KT_2 = 310 \text{ K}

The rate constant increases by 12%, which means k2=k1+0.12k1=1.12k1k_2 = k_1 + 0.12k_1 = 1.12k_1. Therefore, k2k1=1.12\frac{k_2}{k_1} = 1.12.

Substitute the given values into the Arrhenius equation:

ln(1.12)=Ea8.314 J mol1 K1(310 K300 K300 K×310 K)\ln(1.12) = \frac{E_a}{8.314 \text{ J mol}^{-1}\text{ K}^{-1}}\left(\frac{310 \text{ K} - 300 \text{ K}}{300 \text{ K} \times 310 \text{ K}}\right)

Calculate the terms:

ln(1.12)0.1133\ln(1.12) \approx 0.1133

310300300×310=10930000.00010752688 K1\frac{310 - 300}{300 \times 310} = \frac{10}{93000} \approx 0.00010752688 \text{ K}^{-1}

Now, substitute these values back into the equation:

0.1133=Ea8.314×0.000107526880.1133 = \frac{E_a}{8.314} \times 0.00010752688

Solve for EaE_a:

Ea=0.1133×8.3140.00010752688E_a = \frac{0.1133 \times 8.314}{0.00010752688} Ea=0.94200220.00010752688E_a = \frac{0.9420022}{0.00010752688} Ea8760.3 J/molE_a \approx 8760.3 \text{ J/mol}

To convert the activation energy from joules per mole to kilojoules per mole, divide by 1000:

Ea=8760.31000 kJ/molE_a = \frac{8760.3}{1000} \text{ kJ/mol} Ea8.76 kJ/molE_a \approx 8.76 \text{ kJ/mol}