Question
Question: $\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2 - ab \end{vmatrix} = kabc$, the val...
111abca2−bcb2−acc2−ab=kabc, the value of k is:

A
1
B
-1
C
0
D
None of these
Answer
k = 0
Explanation
Solution
We wish to evaluate
D=111abca2−bcb2−acc2−aband write it in the form kabc.
Step 1. Subtract the first row from the second and third rows:
R2R3→R2−R1,→R3−R1.After subtraction, the matrix becomes
100ab−ac−aa2−bc(b2−ac−(a2−bc))(c2−ab−(a2−bc)).Step 2. Simplify the third column for R2 and R3.
For R2:
b2−ac−(a2−bc)=(b2−a2)+(bc−ac)=(b−a)(b+a)+c(b−a)=(b−a)(a+b+c).Similarly for R3:
c2−ab−(a2−bc)=(c−a)(a+b+c).Thus the matrix becomes
100ab−ac−aa2−bc(b−a)(a+b+c)(c−a)(a+b+c).Step 3. Now, the determinant simplifies by expanding along the first row:
D=1⋅b−ac−a(b−a)(a+b+c)(c−a)(a+b+c).Compute the 2×2 determinant:
Δ=(b−a)(c−a)(a+b+c)−(c−a)(b−a)(a+b+c)=0.Thus, the overall determinant D=0.
Since the problem statement tells us that
D=kabc,we conclude that kabc=0 for arbitrary a, b, and c. Therefore,
k=0.