Solveeit Logo

Question

Question: $\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2 - ab \end{vmatrix} = kabc$, the val...

1aa2bc1bb2ac1cc2ab=kabc\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2 - ab \end{vmatrix} = kabc, the value of k is:

A

1

B

-1

C

0

D

None of these

Answer

k = 0

Explanation

Solution

We wish to evaluate

D=1aa2bc1bb2ac1cc2abD=\begin{vmatrix} 1 & a & a^2-bc \\ 1 & b & b^2-ac \\ 1 & c & c^2-ab \end{vmatrix}

and write it in the form kabck\,a\,b\,c.

Step 1. Subtract the first row from the second and third rows:

R2R2R1,R3R3R1.\begin{aligned} R_2 &\to R_2 - R_1,\\[1mm] R_3 &\to R_3 - R_1. \end{aligned}

After subtraction, the matrix becomes

(1aa2bc0ba(b2ac(a2bc))0ca(c2ab(a2bc))).\begin{pmatrix} 1 & a & a^2-bc\\[1mm] 0 & b-a & \bigl(b^2-ac-(a^2-bc)\bigr)\\[1mm] 0 & c-a & \bigl(c^2-ab-(a^2-bc)\bigr) \end{pmatrix}.

Step 2. Simplify the third column for R2R_2 and R3R_3.

For R2R_2:

b2ac(a2bc)=(b2a2)+(bcac)=(ba)(b+a)+c(ba)=(ba)(a+b+c).\begin{aligned} b^2-ac-(a^2-bc) &= (b^2-a^2) + (bc-ac)\\[1mm] &= (b-a)(b+a) + c(b-a)\\[1mm] &=(b-a)(a+b+c). \end{aligned}

Similarly for R3R_3:

c2ab(a2bc)=(ca)(a+b+c).c^2-ab-(a^2-bc)=(c-a)(a+b+c).

Thus the matrix becomes

(1aa2bc0ba(ba)(a+b+c)0ca(ca)(a+b+c)).\begin{pmatrix} 1 & a & a^2-bc\\[1mm] 0 & b-a & (b-a)(a+b+c)\\[1mm] 0 & c-a & (c-a)(a+b+c) \end{pmatrix}.

Step 3. Now, the determinant simplifies by expanding along the first row:

D=1ba(ba)(a+b+c)ca(ca)(a+b+c).D = 1 \cdot \begin{vmatrix} b-a & (b-a)(a+b+c)\\[1mm] c-a & (c-a)(a+b+c) \end{vmatrix}.

Compute the 2×2 determinant:

Δ=(ba)(ca)(a+b+c)(ca)(ba)(a+b+c)=0.\begin{aligned} \Delta &= (b-a)(c-a)(a+b+c) - (c-a)(b-a)(a+b+c)\\[1mm] &= 0. \end{aligned}

Thus, the overall determinant D=0D = 0.

Since the problem statement tells us that

D=kabc,D = k\,a\,b\,c,

we conclude that kabc=0k\,a\,b\,c = 0 for arbitrary aa, bb, and cc. Therefore,

k=0.k = 0.