Solveeit Logo

Question

Question: Vapour pressure of pure A = 100 torr, moles = 2; vapour pressure of pure B = 80 torr, moles = 3. Tot...

Vapour pressure of pure A = 100 torr, moles = 2; vapour pressure of pure B = 80 torr, moles = 3. Total vapour pressure of the mixture is

A

440 torr

B

460 torr

C

180 torr

D

88 torr

Answer

88 torr

Explanation

Solution

Here's how to calculate the total vapor pressure of the mixture:

  1. Calculate Mole Fractions in Liquid Phase:

    Total moles of the mixture (ntotaln_{total}) = Moles of A (nAn_A) + Moles of B (nBn_B)

    ntotal=2 moles+3 moles=5 molesn_{total} = 2 \text{ moles} + 3 \text{ moles} = 5 \text{ moles}

    Mole fraction of A (XAX_A) = nAntotal=25=0.4\frac{n_A}{n_{total}} = \frac{2}{5} = 0.4

    Mole fraction of B (XBX_B) = nBntotal=35=0.6\frac{n_B}{n_{total}} = \frac{3}{5} = 0.6

  2. Calculate Partial Pressures in Vapor Phase (Raoult's Law):

    According to Raoult's Law, the partial pressure of a component in an ideal solution is given by Pi=XiPi0P_i = X_i P_i^0, where Pi0P_i^0 is the vapor pressure of the pure component.

    Partial pressure of A (PAP_A) = XAPA0=0.4×100 torr=40 torrX_A \cdot P_A^0 = 0.4 \times 100 \text{ torr} = 40 \text{ torr}

    Partial pressure of B (PBP_B) = XBPB0=0.6×80 torr=48 torrX_B \cdot P_B^0 = 0.6 \times 80 \text{ torr} = 48 \text{ torr}

  3. Calculate Total Vapor Pressure (Dalton's Law of Partial Pressures):

    The total vapor pressure of the mixture (PtotalP_{total}) is the sum of the partial pressures of its components.

    Ptotal=PA+PB=40 torr+48 torr=88 torrP_{total} = P_A + P_B = 40 \text{ torr} + 48 \text{ torr} = 88 \text{ torr}