Solveeit Logo

Question

Question: Using second law of motion, derive the relation between force and acceleration. A bullet of 10 g str...

Using second law of motion, derive the relation between force and acceleration. A bullet of 10 g strikes a sand-bag at a speed of 10310^3 m s1s^{-1} and gets embedded after travelling 5 cm. Calculate:

(i) the resistive force exerted by the sand on the bullet.

(ii) the time taken by the bullet to come to rest.

A

(i) 10610^6 N, (ii) 10410^{-4} s

B

(i) 10510^5 N, (ii) 10410^{-4} s

C

(i) 10610^6 N, (ii) 10510^{-5} s

D

(i) 10510^5 N, (ii) 10510^{-5} s

Answer

(i) the resistive force exerted by the sand on the bullet is 10610^6 N. (ii) the time taken by the bullet to come to rest is 10410^{-4} s.

Explanation

Solution

  1. Derivation of F=ma\vec{F} = m\vec{a}: Newton's second law: F=dpdt\vec{F} = \frac{d\vec{p}}{dt}. Momentum: p=mv\vec{p} = m\vec{v}. For constant mass: F=mdvdt=ma\vec{F} = m \frac{d\vec{v}}{dt} = m\vec{a}.

  2. Given Data: Mass, m=10 g=0.01 kgm = 10 \text{ g} = 0.01 \text{ kg} Initial velocity, u=103 m s1u = 10^3 \text{ m s}^{-1} Distance, s=5 cm=0.05 ms = 5 \text{ cm} = 0.05 \text{ m} Final velocity, v=0 m s1v = 0 \text{ m s}^{-1}

  3. Calculate Acceleration (aa): Using the kinematic equation v2=u2+2asv^2 = u^2 + 2as: 02=(103)2+2×a×0.050^2 = (10^3)^2 + 2 \times a \times 0.05 0=106+0.1a0 = 10^6 + 0.1a 0.1a=1060.1a = -10^6 a=107 m s2a = -10^7 \text{ m s}^{-2}

  4. Calculate Resistive Force (FF): Using Newton's second law F=maF = ma: F=(0.01 kg)×(107 m s2)F = (0.01 \text{ kg}) \times (-10^7 \text{ m s}^{-2}) F=106 NF = -10^6 \text{ N} The magnitude of the resistive force is 106 N10^6 \text{ N}.

  5. Calculate Time (tt): Using the kinematic equation v=u+atv = u + at: 0=103+(107)×t0 = 10^3 + (-10^7) \times t 107t=10310^7 t = 10^3 t=103107=104 st = \frac{10^3}{10^7} = 10^{-4} \text{ s}