Solveeit Logo

Question

Question: The value of $\lim_{x\to 0} (\frac{1+2x}{1+3x})^{\frac{1}{x^2}}.e^{\frac{1}{x}}$ is...

The value of limx0(1+2x1+3x)1x2.e1x\lim_{x\to 0} (\frac{1+2x}{1+3x})^{\frac{1}{x^2}}.e^{\frac{1}{x}} is

Answer

e^{5/2}

Explanation

Solution

Let L=limx0(1+2x1+3x)1x2.e1xL = \lim_{x\to 0} (\frac{1+2x}{1+3x})^{\frac{1}{x^2}}.e^{\frac{1}{x}}. Taking the natural logarithm of both sides: lnL=limx0ln[(1+2x1+3x)1x2.e1x]\ln L = \lim_{x\to 0} \ln \left[ (\frac{1+2x}{1+3x})^{\frac{1}{x^2}}.e^{\frac{1}{x}} \right] lnL=limx0[1x2ln(1+2x1+3x)+1x]\ln L = \lim_{x\to 0} \left[ \frac{1}{x^2} \ln\left(\frac{1+2x}{1+3x}\right) + \frac{1}{x} \right] lnL=limx0[ln(1+2x)ln(1+3x)+xx2]\ln L = \lim_{x\to 0} \left[ \frac{\ln(1+2x) - \ln(1+3x) + x}{x^2} \right]

Using Taylor series expansions around x=0x=0: ln(1+u)=uu22+O(u3)\ln(1+u) = u - \frac{u^2}{2} + O(u^3) ln(1+2x)=2x(2x)22+O(x3)=2x2x2+O(x3)\ln(1+2x) = 2x - \frac{(2x)^2}{2} + O(x^3) = 2x - 2x^2 + O(x^3) ln(1+3x)=3x(3x)22+O(x3)=3x9x22+O(x3)\ln(1+3x) = 3x - \frac{(3x)^2}{2} + O(x^3) = 3x - \frac{9x^2}{2} + O(x^3)

Substitute these into the numerator: Numerator =(2x2x2)(3x9x22)+x+O(x3)= (2x - 2x^2) - (3x - \frac{9x^2}{2}) + x + O(x^3) Numerator =(2x3x+x)+(2x2+9x22)+O(x3)= (2x - 3x + x) + (-2x^2 + \frac{9x^2}{2}) + O(x^3) Numerator =0+5x22+O(x3)= 0 + \frac{5x^2}{2} + O(x^3)

So, lnL=limx05x22+O(x3)x2=limx0(52+O(x))=52\ln L = \lim_{x\to 0} \frac{\frac{5x^2}{2} + O(x^3)}{x^2} = \lim_{x\to 0} (\frac{5}{2} + O(x)) = \frac{5}{2}. Since lnL=52\ln L = \frac{5}{2}, then L=e5/2L = e^{5/2}.