Solveeit Logo

Question

Question: The value of $\int_{0}^{\sin^2 x} \sin^{-1} \sqrt{t}dt + \int_{0}^{\cos^2 x} \cos^{-1} \sqrt{t}dt$...

The value of 0sin2xsin1tdt+0cos2xcos1tdt\int_{0}^{\sin^2 x} \sin^{-1} \sqrt{t}dt + \int_{0}^{\cos^2 x} \cos^{-1} \sqrt{t}dt

Answer

π4\frac{\pi}{4}

Explanation

Solution

We need to evaluate

I=0sin2xsin1tdt+0cos2xcos1tdt.I = \int_{0}^{\sin^2 x} \sin^{-1}\sqrt{t}\,dt + \int_{0}^{\cos^2 x} \cos^{-1}\sqrt{t}\,dt.

Step 1. Differentiate II with respect to xx using the Leibniz rule.

For the first integral:

ddx0sin2xsin1tdt=sin1sin2xddx(sin2x).\frac{d}{dx}\int_{0}^{\sin^2 x} \sin^{-1}\sqrt{t}\,dt = \sin^{-1}\sqrt{\sin^2 x}\cdot \frac{d}{dx}(\sin^2 x).

Since for x[0,π/2]x\in[0,\pi/2], sin2x=sinx\sqrt{\sin^2 x}=\sin x and sin1(sinx)=x\sin^{-1}(\sin x)=x, and

ddx(sin2x)=2sinxcosx=sin2x,\frac{d}{dx}(\sin^2 x)=2\sin x\cos x = \sin 2x,

this term becomes:

xsin2x.x\sin2x.

For the second integral:

ddx0cos2xcos1tdt=cos1cos2xddx(cos2x).\frac{d}{dx}\int_{0}^{\cos^2 x} \cos^{-1}\sqrt{t}\,dt = \cos^{-1}\sqrt{\cos^2 x}\cdot \frac{d}{dx}(\cos^2 x).

Similarly, for x[0,π/2]x\in[0,\pi/2] we have cos2x=cosx\sqrt{\cos^2 x}=\cos x and cos1(cosx)=x\cos^{-1}(\cos x)=x. Also,

ddx(cos2x)=2sinxcosx=sin2x.\frac{d}{dx}(\cos^2 x)= -2\sin x\cos x = -\sin2x.

Thus, the second term is:

x(sin2x)=xsin2x.x(-\sin2x) = -x\sin2x.

So the derivative of II is

dIdx=xsin2xxsin2x=0.\frac{dI}{dx} = x\sin2x - x\sin2x = 0.

This shows that II is constant (independent of xx).

Step 2. Determine the constant by choosing an easy value of xx. Let x=π/2x=\pi/2.

Then, sin2(π/2)=1\sin^2(\pi/2)=1 and cos2(π/2)=0\cos^2(\pi/2)=0. Therefore,

I=01sin1tdt+00cos1tdt=01sin1tdt.I = \int_0^1 \sin^{-1}\sqrt{t}\,dt + \int_0^0 \cos^{-1}\sqrt{t}\,dt = \int_0^1 \sin^{-1}\sqrt{t}\,dt.

Step 3. Compute J=01sin1tdtJ = \int_{0}^{1} \sin^{-1}\sqrt{t}\,dt.

Let t=u2t=u^2, so that dt=2ududt=2u\,du, and when t=0t=0, u=0u=0; t=1t=1, u=1u=1. Then,

J=01sin1(u)2udu=201usin1udu.J = \int_{0}^{1} \sin^{-1}(u)\cdot 2u\,du = 2\int_{0}^{1} u\,\sin^{-1}u\,du.

Now, apply integration by parts:

  • Let v=sin1uv=\sin^{-1}u so that dvdu=11u2\frac{dv}{du}=\frac{1}{\sqrt{1-u^2}}.
  • Let dw=ududw= u\,du so that w=u22w=\frac{u^2}{2}.

Thus,

usin1udu=u22sin1uu2211u2du.\int u\,\sin^{-1}u\,du = \frac{u^2}{2}\sin^{-1}u - \int \frac{u^2}{2}\cdot \frac{1}{\sqrt{1-u^2}}\,du.

Multiplying by 2, we have:

201usin1udu=[ u2sin1u ]0101u21u2du.2\int_0^1 u\,\sin^{-1}u\,du = \left[\ u^2\sin^{-1}u\ \right]_0^1 - \int_0^1 \frac{u^2}{\sqrt{1-u^2}}\,du.

At u=1u=1, sin11=π2\sin^{-1}1=\frac{\pi}{2} and 12=11^2=1. At u=0u=0, the term vanishes. Hence,

201usin1udu=π201u21u2du.2\int_0^1 u\,\sin^{-1}u\,du = \frac{\pi}{2} - \int_0^1 \frac{u^2}{\sqrt{1-u^2}}\,du.

Now, evaluate

K=01u21u2du.K = \int_0^1 \frac{u^2}{\sqrt{1-u^2}}\,du.

Substitute u=sinθu=\sin\theta so that du=cosθdθdu=\cos\theta\,d\theta and 1u2=cosθ\sqrt{1-u^2}=\cos\theta. The limits transform to: when u=0u=0, θ=0\theta=0; when u=1u=1, θ=π/2\theta=\pi/2. Then,

K=0π/2sin2θcosθcosθdθ=0π/2sin2θdθ.K = \int_{0}^{\pi/2} \frac{\sin^2\theta}{\cos\theta}\cdot \cos\theta\,d\theta = \int_{0}^{\pi/2} \sin^2\theta\,d\theta.

A standard integral gives:

0π/2sin2θdθ=π4.\int_{0}^{\pi/2} \sin^2\theta\,d\theta = \frac{\pi}{4}.

Thus,

201usin1udu=π2π4=π4.2\int_0^1 u\,\sin^{-1}u\,du = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}.

This means J=π4J = \frac{\pi}{4}, and hence

I=π4.I = \frac{\pi}{4}.