Solveeit Logo

Question

Question: If $\overline a = \hat i + \hat j - 2\hat k$, then the value of $|(\overline a \times \hat i) \times...

If a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k, then the value of (a×i^)×j^2+(a×j^)×i^2+(a×k^)×i^2|(\overline a \times \hat i) \times \hat j|^2 + |(\overline a \times \hat j) \times \hat i|^2 + |(\overline a \times \hat k) \times \hat i|^2

A

1

B

2

C

3

D

4

Answer

3

Explanation

Solution

We are asked to find the value of (a×i^)×j^2+(a×j^)×i^2+(a×k^)×i^2|(\overline a \times \hat i) \times \hat j|^2 + |(\overline a \times \hat j) \times \hat i|^2 + |(\overline a \times \hat k) \times \hat i|^2, given a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k.

We can use the vector triple product identity: (u×v)×w=(uw)v(vw)u( \mathbf{u} \times \mathbf{v} ) \times \mathbf{w} = (\mathbf{u} \cdot \mathbf{w})\mathbf{v} - (\mathbf{v} \cdot \mathbf{w})\mathbf{u}.

Let a=a1i^+a2j^+a3k^\overline a = a_1\hat i + a_2\hat j + a_3\hat k. Given a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k, we have a1=1a_1 = 1, a2=1a_2 = 1, and a3=2a_3 = -2.

Let's evaluate each term:

Term 1: (a×i^)×j^2|(\overline a \times \hat i) \times \hat j|^2 Using the identity with u=a\mathbf{u} = \overline a, v=i^\mathbf{v} = \hat i, and w=j^\mathbf{w} = \hat j: (a×i^)×j^=(aj^)i^(i^j^)a(\overline a \times \hat i) \times \hat j = (\overline a \cdot \hat j)\hat i - (\hat i \cdot \hat j)\overline a Since i^j^=0\hat i \cdot \hat j = 0, this simplifies to: (a×i^)×j^=(aj^)i^(\overline a \times \hat i) \times \hat j = (\overline a \cdot \hat j)\hat i The dot product aj^=(a1i^+a2j^+a3k^)j^=a2\overline a \cdot \hat j = (a_1\hat i + a_2\hat j + a_3\hat k) \cdot \hat j = a_2. So, (a×i^)×j^=a2i^(\overline a \times \hat i) \times \hat j = a_2\hat i. The magnitude squared is a2i^2=a22i^2=a22(1)2=a22|a_2\hat i|^2 = a_2^2 |\hat i|^2 = a_2^2 (1)^2 = a_2^2. For a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k, a2=1a_2 = 1, so the first term is 12=11^2 = 1.

Term 2: (a×j^)×i^2|(\overline a \times \hat j) \times \hat i|^2 Using the identity with u=a\mathbf{u} = \overline a, v=j^\mathbf{v} = \hat j, and w=i^\mathbf{w} = \hat i: (a×j^)×i^=(ai^)j^(j^i^)a(\overline a \times \hat j) \times \hat i = (\overline a \cdot \hat i)\hat j - (\hat j \cdot \hat i)\overline a Since j^i^=0\hat j \cdot \hat i = 0, this simplifies to: (a×j^)×i^=(ai^)j^(\overline a \times \hat j) \times \hat i = (\overline a \cdot \hat i)\hat j The dot product ai^=(a1i^+a2j^+a3k^)i^=a1\overline a \cdot \hat i = (a_1\hat i + a_2\hat j + a_3\hat k) \cdot \hat i = a_1. So, (a×j^)×i^=a1j^(\overline a \times \hat j) \times \hat i = a_1\hat j. The magnitude squared is a1j^2=a12j^2=a12(1)2=a12|a_1\hat j|^2 = a_1^2 |\hat j|^2 = a_1^2 (1)^2 = a_1^2. For a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k, a1=1a_1 = 1, so the second term is 12=11^2 = 1.

Term 3: (a×k^)×i^2|(\overline a \times \hat k) \times \hat i|^2 Using the identity with u=a\mathbf{u} = \overline a, v=k^\mathbf{v} = \hat k, and w=i^\mathbf{w} = \hat i: (a×k^)×i^=(ai^)k^(k^i^)a(\overline a \times \hat k) \times \hat i = (\overline a \cdot \hat i)\hat k - (\hat k \cdot \hat i)\overline a Since k^i^=0\hat k \cdot \hat i = 0, this simplifies to: (a×k^)×i^=(ai^)k^(\overline a \times \hat k) \times \hat i = (\overline a \cdot \hat i)\hat k The dot product ai^=a1\overline a \cdot \hat i = a_1. So, (a×k^)×i^=a1k^(\overline a \times \hat k) \times \hat i = a_1\hat k. The magnitude squared is a1k^2=a12k^2=a12(1)2=a12|a_1\hat k|^2 = a_1^2 |\hat k|^2 = a_1^2 (1)^2 = a_1^2. For a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k, a1=1a_1 = 1, so the third term is 12=11^2 = 1.

Summation The total value is the sum of these three terms: Value = (a×i^)×j^2+(a×j^)×i^2+(a×k^)×i^2|(\overline a \times \hat i) \times \hat j|^2 + |(\overline a \times \hat j) \times \hat i|^2 + |(\overline a \times \hat k) \times \hat i|^2 Value = a22+a12+a12a_2^2 + a_1^2 + a_1^2 Substituting the values a1=1a_1 = 1 and a2=1a_2 = 1: Value = 12+12+12=1+1+1=31^2 + 1^2 + 1^2 = 1 + 1 + 1 = 3.

Alternatively, we can compute the cross products directly: a=i^+j^2k^\overline a = \hat i + \hat j - 2\hat k

  1. a×i^=(i^+j^2k^)×i^=(j^×i^)2(k^×i^)=k^2j^\overline a \times \hat i = (\hat i + \hat j - 2\hat k) \times \hat i = (\hat j \times \hat i) - 2(\hat k \times \hat i) = -\hat k - 2\hat j. (a×i^)×j^=(2j^k^)×j^=2(j^×j^)(k^×j^)=0(i^)=i^(\overline a \times \hat i) \times \hat j = (-2\hat j - \hat k) \times \hat j = -2(\hat j \times \hat j) - (\hat k \times \hat j) = \overline 0 - (-\hat i) = \hat i. (a×i^)×j^2=i^2=1|(\overline a \times \hat i) \times \hat j|^2 = |\hat i|^2 = 1.

  2. a×j^=(i^+j^2k^)×j^=(i^×j^)2(k^×j^)=k^2(i^)=2i^+k^\overline a \times \hat j = (\hat i + \hat j - 2\hat k) \times \hat j = (\hat i \times \hat j) - 2(\hat k \times \hat j) = \hat k - 2(-\hat i) = 2\hat i + \hat k. (a×j^)×i^=(2i^+k^)×i^=2(i^×i^)+(k^×i^)=0+j^=j^(\overline a \times \hat j) \times \hat i = (2\hat i + \hat k) \times \hat i = 2(\hat i \times \hat i) + (\hat k \times \hat i) = \overline 0 + \hat j = \hat j. (a×j^)×i^2=j^2=1|(\overline a \times \hat j) \times \hat i|^2 = |\hat j|^2 = 1.

  3. a×k^=(i^+j^2k^)×k^=(i^×k^)+(j^×k^)=j^+i^\overline a \times \hat k = (\hat i + \hat j - 2\hat k) \times \hat k = (\hat i \times \hat k) + (\hat j \times \hat k) = -\hat j + \hat i. (a×k^)×i^=(i^j^)×i^=(i^×i^)(j^×i^)=0(k^)=k^(\overline a \times \hat k) \times \hat i = (\hat i - \hat j) \times \hat i = (\hat i \times \hat i) - (\hat j \times \hat i) = \overline 0 - (-\hat k) = \hat k. (a×k^)×i^2=k^2=1|(\overline a \times \hat k) \times \hat i|^2 = |\hat k|^2 = 1.

Summing the magnitudes squared: 1+1+1=31 + 1 + 1 = 3.

The final answer is 3\boxed{3}.