Solveeit Logo

Question

Question: Let $$ be a sequence such that $a_1+a_2+...+a_n = \frac{n^2+3n}{(n+1)(n+2)}$. If $28\sum_{k=1}^{10}\...

Let $$ be a sequence such that a1+a2+...+an=n2+3n(n+1)(n+2)a_1+a_2+...+a_n = \frac{n^2+3n}{(n+1)(n+2)}. If 28k=1101ak=p1p2p3...pm28\sum_{k=1}^{10}\frac{1}{a_k}=p_1p_2p_3...p_m, where p1,p2,...pmp_1,p_2,...p_m are the first mm prime numbers, then mm is equal to

A

5

B

8

C

6

D

7

Answer

6

Explanation

Solution

We are given that the partial sum

Sn=a1+a2++an=n2+3n(n+1)(n+2).S_n = a_1 + a_2 + \cdots + a_n = \frac{n^2+3n}{(n+1)(n+2)}.

Then the nthn^\text{th} term is:

an=SnSn1.a_n = S_n - S_{n-1}.

First, write:

Sn=n(n+3)(n+1)(n+2),Sn1=(n1)2+3(n1)n(n+1)=n2+n2n(n+1).S_n = \frac{n(n+3)}{(n+1)(n+2)}, \quad S_{n-1} = \frac{(n-1)^2+3(n-1)}{n(n+1)} = \frac{n^2+n-2}{n(n+1)}.

Thus,

an=n(n+3)(n+1)(n+2)n2+n2n(n+1).a_n = \frac{n(n+3)}{(n+1)(n+2)} - \frac{n^2+n-2}{n(n+1)}.

Writing over a common denominator n(n+1)(n+2)n(n+1)(n+2):

an=n2(n+3)(n+2)(n2+n2)n(n+1)(n+2).a_n = \frac{n^2(n+3) - (n+2)(n^2+n-2)}{n(n+1)(n+2)}.

Expanding:

n2(n+3)=n3+3n2,n^2(n+3)= n^3+3n^2, (n+2)(n2+n2)=n3+3n24.(n+2)(n^2+n-2)= n^3+3n^2-4.

So,

an=(n3+3n2)(n3+3n24)n(n+1)(n+2)=4n(n+1)(n+2).a_n = \frac{(n^3+3n^2) - (n^3+3n^2-4)}{n(n+1)(n+2)} = \frac{4}{n(n+1)(n+2)}.

Now, compute

k=1101ak=k=110k(k+1)(k+2)4.\sum_{k=1}^{10}\frac{1}{a_k} = \sum_{k=1}^{10} \frac{k(k+1)(k+2)}{4}.

That is,

k=1101ak=14k=110k(k+1)(k+2).\sum_{k=1}^{10}\frac{1}{a_k} = \frac{1}{4}\sum_{k=1}^{10} k(k+1)(k+2).

Note that

k(k+1)(k+2)=k3+3k2+2k.k(k+1)(k+2)= k^3+3k^2+2k.

Thus,

k=110(k3+3k2+2k)=k=110k3+3k=110k2+2k=110k.\sum_{k=1}^{10} \bigl(k^3+3k^2+2k\bigr)= \sum_{k=1}^{10} k^3 + 3\sum_{k=1}^{10} k^2 + 2\sum_{k=1}^{10} k.

Using standard formulas:

k=110k=55,k=110k2=385,k=110k3=(55)2=3025.\sum_{k=1}^{10} k = 55,\quad \sum_{k=1}^{10} k^2 = 385,\quad \sum_{k=1}^{10} k^3 = (55)^2=3025.

Hence,

3025+3(385)+2(55)=3025+1155+110=4290.3025+ 3(385) + 2(55)= 3025+1155+110=4290.

Thus,

k=1101ak=42904=42904.\sum_{k=1}^{10}\frac{1}{a_k} = \frac{4290}{4} = \frac{4290}{4}.

Then, the given expression becomes:

28k=1101ak=28×42904=7×4290=30030.28\sum_{k=1}^{10}\frac{1}{a_k} = 28 \times \frac{4290}{4} = 7 \times 4290 = 30030.

Notice that

30030=2×3×5×7×11×13,30030 = 2 \times 3 \times 5 \times 7 \times 11 \times 13,

which is the product of the first 6 primes. Therefore, m=6m=6.