Question
Question: Let $$ be a sequence such that $a_1+a_2+...+a_n = \frac{n^2+3n}{(n+1)(n+2)}$. If $28\sum_{k=1}^{10}\...
Let $$ be a sequence such that a1+a2+...+an=(n+1)(n+2)n2+3n. If 28∑k=110ak1=p1p2p3...pm, where p1,p2,...pm are the first m prime numbers, then m is equal to

A
5
B
8
C
6
D
7
Answer
6
Explanation
Solution
We are given that the partial sum
Sn=a1+a2+⋯+an=(n+1)(n+2)n2+3n.Then the nth term is:
an=Sn−Sn−1.First, write:
Sn=(n+1)(n+2)n(n+3),Sn−1=n(n+1)(n−1)2+3(n−1)=n(n+1)n2+n−2.Thus,
an=(n+1)(n+2)n(n+3)−n(n+1)n2+n−2.Writing over a common denominator n(n+1)(n+2):
an=n(n+1)(n+2)n2(n+3)−(n+2)(n2+n−2).Expanding:
n2(n+3)=n3+3n2, (n+2)(n2+n−2)=n3+3n2−4.So,
an=n(n+1)(n+2)(n3+3n2)−(n3+3n2−4)=n(n+1)(n+2)4.Now, compute
k=1∑10ak1=k=1∑104k(k+1)(k+2).That is,
k=1∑10ak1=41k=1∑10k(k+1)(k+2).Note that
k(k+1)(k+2)=k3+3k2+2k.Thus,
k=1∑10(k3+3k2+2k)=k=1∑10k3+3k=1∑10k2+2k=1∑10k.Using standard formulas:
k=1∑10k=55,k=1∑10k2=385,k=1∑10k3=(55)2=3025.Hence,
3025+3(385)+2(55)=3025+1155+110=4290.Thus,
k=1∑10ak1=44290=44290.Then, the given expression becomes:
28k=1∑10ak1=28×44290=7×4290=30030.Notice that
30030=2×3×5×7×11×13,which is the product of the first 6 primes. Therefore, m=6.