Solveeit Logo

Question

Question: Let adj (1) = $\begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$ then the value o...

Let adj (1) = [213312221]\begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}

then the value of det (adj (adj 2A)) is

A

(1)(18)4

B

64

C

124

D

(24)4

Answer

(24)^4

Explanation

Solution

Let A be a square matrix of order n. We are given adj(A) as a 3x3 matrix, so the order of matrix A is n=3.

Let B=adj(A)=[213312221]B = \text{adj}(A) = \begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}. The order of B is 3x3, so n=3.

First, we calculate the determinant of adj(A). det(adj(A))=det[213312221]\det(\text{adj}(A)) = \det\begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix} =2(1(1)2(2))1(3(1)2(2))+3(3(2)1(2))= 2(1(-1) - 2(2)) - 1(3(-1) - 2(2)) + 3(3(2) - 1(2)) =2(14)1(34)+3(62)= 2(-1 - 4) - 1(-3 - 4) + 3(6 - 2) =2(5)1(7)+3(4)= 2(-5) - 1(-7) + 3(4) =10+7+12=9= -10 + 7 + 12 = 9.

For a square matrix A of order n, we have the property det(adj(A))=(det(A))n1\det(\text{adj}(A)) = (\det(A))^{n-1}. In this case, n=3, so det(adj(A))=(det(A))31=(det(A))2\det(\text{adj}(A)) = (\det(A))^{3-1} = (\det(A))^2. We found det(adj(A))=9\det(\text{adj}(A)) = 9. So, (det(A))2=9(\det(A))^2 = 9.

We need to find the value of det(adj(adj(2A)))\det(\text{adj}(\text{adj}(2A))). For a square matrix X of order n, we have the property det(adj(X))=(det(X))n1\det(\text{adj}(X)) = (\det(X))^{n-1}. Applying this property twice, let Y = adj(X). Then det(adj(Y))=(det(Y))n1\det(\text{adj}(Y)) = (\det(Y))^{n-1}. Substituting Y = adj(X), we get det(adj(adj(X)))=(det(adj(X)))n1\det(\text{adj}(\text{adj}(X))) = (\det(\text{adj}(X)))^{n-1}. Using det(adj(X))=(det(X))n1\det(\text{adj}(X)) = (\det(X))^{n-1}, we get det(adj(adj(X)))=((det(X))n1)n1=(det(X))(n1)2\det(\text{adj}(\text{adj}(X))) = ((\det(X))^{n-1})^{n-1} = (\det(X))^{(n-1)^2}.

In our problem, X = 2A and n=3. So, det(adj(adj(2A)))=(det(2A))(31)2=(det(2A))22=(det(2A))4\det(\text{adj}(\text{adj}(2A))) = (\det(2A))^{(3-1)^2} = (\det(2A))^{2^2} = (\det(2A))^4.

For a scalar k and a square matrix A of order n, we have the property det(kA)=kndet(A)\det(kA) = k^n \det(A). In our case, k=2 and A is of order n=3. So, det(2A)=23det(A)=8det(A)\det(2A) = 2^3 \det(A) = 8 \det(A).

Substitute this into the expression for det(adj(adj(2A)))\det(\text{adj}(\text{adj}(2A))): det(adj(adj(2A)))=(8det(A))4=84(det(A))4\det(\text{adj}(\text{adj}(2A))) = (8 \det(A))^4 = 8^4 (\det(A))^4.

We know that (det(A))2=9(\det(A))^2 = 9. So, (det(A))4=((det(A))2)2=92=81(\det(A))^4 = ((\det(A))^2)^2 = 9^2 = 81.

Substitute this value back into the expression: det(adj(adj(2A)))=84×81\det(\text{adj}(\text{adj}(2A))) = 8^4 \times 81. 84=(23)4=212=40968^4 = (2^3)^4 = 2^{12} = 4096. So, det(adj(adj(2A)))=4096×81\det(\text{adj}(\text{adj}(2A))) = 4096 \times 81.

Now, we calculate the product: 4096×81=4096×(80+1)=4096×80+4096×14096 \times 81 = 4096 \times (80 + 1) = 4096 \times 80 + 4096 \times 1 =327680+4096=331776= 327680 + 4096 = 331776.

Now let's check the given options, assuming the format (x)y means xyx^y. (1) (18)4=(2×32)4=24×38=16×6561=104976(18)^4 = (2 \times 3^2)^4 = 2^4 \times 3^8 = 16 \times 6561 = 104976. (2) 6464. (3) 124124. (4) (24)4=(23×3)4=(23)4×34=212×34=4096×81=331776(24)^4 = (2^3 \times 3)^4 = (2^3)^4 \times 3^4 = 2^{12} \times 3^4 = 4096 \times 81 = 331776.

The calculated value matches option (4).