Question
Question: Let adj (1) = $\begin{bmatrix} 2 & 1 & 3 \\ 3 & 1 & 2 \\ 2 & 2 & -1 \end{bmatrix}$ then the value o...
Let adj (1) = 23211232−1
then the value of det (adj (adj 2A)) is

(1)(18)4
64
124
(24)4
(24)^4
Solution
Let A be a square matrix of order n. We are given adj(A) as a 3x3 matrix, so the order of matrix A is n=3.
Let B=adj(A)=23211232−1. The order of B is 3x3, so n=3.
First, we calculate the determinant of adj(A). det(adj(A))=det23211232−1 =2(1(−1)−2(2))−1(3(−1)−2(2))+3(3(2)−1(2)) =2(−1−4)−1(−3−4)+3(6−2) =2(−5)−1(−7)+3(4) =−10+7+12=9.
For a square matrix A of order n, we have the property det(adj(A))=(det(A))n−1. In this case, n=3, so det(adj(A))=(det(A))3−1=(det(A))2. We found det(adj(A))=9. So, (det(A))2=9.
We need to find the value of det(adj(adj(2A))). For a square matrix X of order n, we have the property det(adj(X))=(det(X))n−1. Applying this property twice, let Y = adj(X). Then det(adj(Y))=(det(Y))n−1. Substituting Y = adj(X), we get det(adj(adj(X)))=(det(adj(X)))n−1. Using det(adj(X))=(det(X))n−1, we get det(adj(adj(X)))=((det(X))n−1)n−1=(det(X))(n−1)2.
In our problem, X = 2A and n=3. So, det(adj(adj(2A)))=(det(2A))(3−1)2=(det(2A))22=(det(2A))4.
For a scalar k and a square matrix A of order n, we have the property det(kA)=kndet(A). In our case, k=2 and A is of order n=3. So, det(2A)=23det(A)=8det(A).
Substitute this into the expression for det(adj(adj(2A))): det(adj(adj(2A)))=(8det(A))4=84(det(A))4.
We know that (det(A))2=9. So, (det(A))4=((det(A))2)2=92=81.
Substitute this value back into the expression: det(adj(adj(2A)))=84×81. 84=(23)4=212=4096. So, det(adj(adj(2A)))=4096×81.
Now, we calculate the product: 4096×81=4096×(80+1)=4096×80+4096×1 =327680+4096=331776.
Now let's check the given options, assuming the format (x)y means xy. (1) (18)4=(2×32)4=24×38=16×6561=104976. (2) 64. (3) 124. (4) (24)4=(23×3)4=(23)4×34=212×34=4096×81=331776.
The calculated value matches option (4).