Solveeit Logo

Question

Question: $\frac{1}{2.4}+\frac{1.3}{2.4.6}+\frac{1.3.5}{2.4.6.8}+\frac{1.3.5.7}{2.4.6.8.10}+\dots\dots\dots\in...

12.4+1.32.4.6+1.3.52.4.6.8+1.3.5.72.4.6.8.10+\frac{1}{2.4}+\frac{1.3}{2.4.6}+\frac{1.3.5}{2.4.6.8}+\frac{1.3.5.7}{2.4.6.8.10}+\dots\dots\dots\infty is equal to -

A

14\frac{1}{4}

B

13\frac{1}{3}

C

12\frac{1}{2}

D

1

Answer

12\frac{1}{2}

Explanation

Solution

The given series is S=12.4+1.32.4.6+1.3.52.4.6.8+1.3.5.72.4.6.8.10+S = \frac{1}{2.4}+\frac{1.3}{2.4.6}+\frac{1.3.5}{2.4.6.8}+\frac{1.3.5.7}{2.4.6.8.10}+\dots\dots\dots\infty. The general term of the series can be written as Tn=135(2n1)246(2n+2)T_n = \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2n+2)}. Using double factorials, the numerator is (2n1)!!(2n-1)!! and the denominator is (2n+2)!!(2n+2)!!. We can express these using factorials: (2n1)!!=(2n)!(2n)!!=(2n)!2nn!(2n-1)!! = \frac{(2n)!}{(2n)!!} = \frac{(2n)!}{2^n n!} (2n+2)!!=2n+1(n+1)!(2n+2)!! = 2^{n+1} (n+1)! Substituting these into TnT_n: Tn=(2n)!2nn!2n+1(n+1)!=(2n)!22n+1n!(n+1)!T_n = \frac{\frac{(2n)!}{2^n n!}}{2^{n+1} (n+1)!} = \frac{(2n)!}{2^{2n+1} n! (n+1)!} We can rewrite TnT_n using the central binomial coefficient (2nn)=(2n)!n!n!\binom{2n}{n} = \frac{(2n)!}{n! n!}: Tn=12(2n)!22nn!(n+1)!=121n+1(2n)!n!n!14n=121n+1(2nn)(14)nT_n = \frac{1}{2} \cdot \frac{(2n)!}{2^{2n} n! (n+1)!} = \frac{1}{2} \cdot \frac{1}{n+1} \cdot \frac{(2n)!}{n! n!} \cdot \frac{1}{4^n} = \frac{1}{2} \frac{1}{n+1} \binom{2n}{n} \left(\frac{1}{4}\right)^n The series sum is S=n=1Tn=n=1121n+1(2nn)(14)n=12n=1(2nn)1n+1(14)nS = \sum_{n=1}^{\infty} T_n = \sum_{n=1}^{\infty} \frac{1}{2} \frac{1}{n+1} \binom{2n}{n} \left(\frac{1}{4}\right)^n = \frac{1}{2} \sum_{n=1}^{\infty} \binom{2n}{n} \frac{1}{n+1} \left(\frac{1}{4}\right)^n. We use the known binomial series expansion: n=0(2nn)xnn+1=114x2x\sum_{n=0}^{\infty} \binom{2n}{n} \frac{x^n}{n+1} = \frac{1 - \sqrt{1-4x}}{2x}. Let x=14x = \frac{1}{4}. Then n=0(2nn)(1/4)nn+1=114(1/4)2(1/4)=101/2=2\sum_{n=0}^{\infty} \binom{2n}{n} \frac{(1/4)^n}{n+1} = \frac{1 - \sqrt{1-4(1/4)}}{2(1/4)} = \frac{1 - \sqrt{0}}{1/2} = 2. Expanding the sum: 2=(00)(1/4)00+1+n=1(2nn)(1/4)nn+1=1+n=1(2nn)14n(n+1)2 = \binom{0}{0} \frac{(1/4)^0}{0+1} + \sum_{n=1}^{\infty} \binom{2n}{n} \frac{(1/4)^n}{n+1} = 1 + \sum_{n=1}^{\infty} \binom{2n}{n} \frac{1}{4^n (n+1)}. Therefore, n=1(2nn)14n(n+1)=21=1\sum_{n=1}^{\infty} \binom{2n}{n} \frac{1}{4^n (n+1)} = 2 - 1 = 1. Substituting this back into the expression for SS: S=12(1)=12S = \frac{1}{2} \cdot (1) = \frac{1}{2}.