Solveeit Logo

Question

Question: Let $z$ be a complex number satisfying $\left(z+\frac{1}{z}\right)$ $\left(z+\frac{1}{z}+1\right)=1...

Let zz be a complex number satisfying (z+1z)\left(z+\frac{1}{z}\right)

(z+1z+1)=1\left(z+\frac{1}{z}+1\right)=1. Then the value of

(3z100+2z100+1)(z100+2z100+3)\left(3z^{100}+\frac{2}{z^{100}}+1\right)\left(z^{100}+\frac{2}{z^{100}}+3\right) equals to

A

25

B

30

C

36

D

50

Answer

36

Explanation

Solution

We first note that since z lies on the unit circle (as will be clear later), we can write

z=eiθz = e^{i\theta} so that z+1z=eiθ+eiθ=2cosθz + \frac{1}{z} = e^{i\theta} + e^{{-i\theta}} = 2\cos\theta.

The given condition is (z+1z)(z+1z+1)=1(z + \frac{1}{z}) \cdot (z + \frac{1}{z} + 1) = 1.

Substitute t=z+1z=2cosθt = z + \frac{1}{z} = 2\cos\theta. Then the condition becomes

t(t+1)=1    t2+t1=0t(t + 1) = 1 \implies t^2 + t - 1 = 0.

One could solve for t, but it is more convenient to return to the trigonometric form: 2cosθ(2cosθ+1)=1    4cos2θ+2cosθ1=02\cos\theta (2\cos\theta + 1) = 1 \implies 4\cos^2\theta + 2\cos\theta - 1 = 0.

Solving this quadratic in cosθ\cos\theta, we get cosθ=1±54\cos\theta = \frac{{-1 \pm \sqrt{5}}}{4}.

Notice that cosθ=5140.309\cos\theta = \frac{{\sqrt{5} - 1}}{4} \approx 0.309 corresponds to θ=72\theta = 72^\circ (or equivalently 2π5\frac{2\pi}{5} radians)

and cosθ=514\cos\theta = \frac{{-\sqrt{5} - 1}}{4} gives another valid angle (144144^\circ). In either case, since z=1|z| = 1, when we raise z to a high power the exponent will effectively be reduced modulo 360360^\circ.

Consider z100=ei100θz^{100} = e^{i100\theta}. For θ=72\theta = 72^\circ, we have:

100θ=100×72=7200100\theta = 100 \times 72^\circ = 7200^\circ. Since 7200/360=207200^\circ/360^\circ = 20 exactly, it follows that

z100=ei7200=1z^{100} = e^{i7200^\circ} = 1.

Similarly, for the other value of θ\theta, z100z^{100} will also be 1 because 100θ100\theta will be an integral multiple of 360360^\circ.

Now the given expression is (3z100+2z100+1)(z100+2z100+3)(3z^{100} + \frac{2}{z^{100}} + 1) \cdot (z^{100} + \frac{2}{z^{100}} + 3).

Since z100=1z^{100} = 1 and 1z100=1\frac{1}{z^{100}} = 1, the expression reduces to

(31+21+1)(1+21+3)=(3+2+1)(1+2+3)=66=36(3\cdot1 + 2\cdot1 + 1) \cdot (1 + 2\cdot1 + 3) = (3 + 2 + 1)(1 + 2 + 3) = 6\cdot6 = 36.

Thus, the value is 36.