Solveeit Logo

Question

Question: Let $\vec{a} = \hat{i} + \hat{j}$, $\vec{b} = 2\hat{i} - \hat{k}$, $\vec{r}$ is a vector satisfying ...

Let a=i^+j^\vec{a} = \hat{i} + \hat{j}, b=2i^k^\vec{b} = 2\hat{i} - \hat{k}, r\vec{r} is a vector satisfying r×a=b×a\vec{r} \times \vec{a} = \vec{b} \times \vec{a} and r×b=a×b\vec{r} \times \vec{b} = \vec{a} \times \vec{b}, then r\vec{r} is

A

i^+j^k^\hat{i} + \hat{j} - \hat{k}

B

3i^+j^k^3\hat{i} + \hat{j} - \hat{k}

C

3i^+j^+k^3\hat{i} + \hat{j} + \hat{k}

D

i^+j^k^-\hat{i} + \hat{j} - \hat{k}

Answer

3\hat{i} + \hat{j} - \hat{k}

Explanation

Solution

The given equations are r×a=b×a\vec{r} \times \vec{a} = \vec{b} \times \vec{a} and r×b=a×b\vec{r} \times \vec{b} = \vec{a} \times \vec{b}. Rearranging the first equation: r×ab×a=0\vec{r} \times \vec{a} - \vec{b} \times \vec{a} = \vec{0} (rb)×a=0(\vec{r} - \vec{b}) \times \vec{a} = \vec{0} This implies that (rb)(\vec{r} - \vec{b}) is parallel to a\vec{a}, so rb=ka\vec{r} - \vec{b} = k\vec{a} for some scalar kk. Thus, r=b+ka\vec{r} = \vec{b} + k\vec{a}.

Rearranging the second equation: r×ba×b=0\vec{r} \times \vec{b} - \vec{a} \times \vec{b} = \vec{0} (ra)×b=0(\vec{r} - \vec{a}) \times \vec{b} = \vec{0} This implies that (ra)(\vec{r} - \vec{a}) is parallel to b\vec{b}, so ra=mb\vec{r} - \vec{a} = m\vec{b} for some scalar mm. Thus, r=a+mb\vec{r} = \vec{a} + m\vec{b}.

Equating the two expressions for r\vec{r}: b+ka=a+mb\vec{b} + k\vec{a} = \vec{a} + m\vec{b} kaa=mbbk\vec{a} - \vec{a} = m\vec{b} - \vec{b} (k1)a=(m1)b(k-1)\vec{a} = (m-1)\vec{b}

Given a=i^+j^\vec{a} = \hat{i} + \hat{j} and b=2i^k^\vec{b} = 2\hat{i} - \hat{k}. Since a\vec{a} and b\vec{b} are not parallel, they are linearly independent. For the equation (k1)a=(m1)b(k-1)\vec{a} = (m-1)\vec{b} to hold, the coefficients must be zero: k1=0    k=1k-1 = 0 \implies k = 1 m1=0    m=1m-1 = 0 \implies m = 1

Substitute k=1k=1 into r=b+ka\vec{r} = \vec{b} + k\vec{a}: r=b+1a=a+b\vec{r} = \vec{b} + 1\vec{a} = \vec{a} + \vec{b}

Now, calculate r\vec{r}: r=(i^+j^)+(2i^k^)\vec{r} = (\hat{i} + \hat{j}) + (2\hat{i} - \hat{k}) r=(1+2)i^+1j^1k^\vec{r} = (1+2)\hat{i} + 1\hat{j} - 1\hat{k} r=3i^+j^k^\vec{r} = 3\hat{i} + \hat{j} - \hat{k}