Solveeit Logo

Question

Question: Let A be a square matrix of order 3 such that $Tr.(A^{-1}) = 3$ and $det(A^{-1}) = \frac{1}{5}$. I...

Let A be a square matrix of order 3 such that

Tr.(A1)=3Tr.(A^{-1}) = 3 and det(A1)=15det(A^{-1}) = \frac{1}{5}.

If (A1B1A)1=2(adjA)(A^{-1}B^{-1}A)^{-1} = 2(adj A), then

A

det (B) = 5000

B

det (B) = 200

C

Tr.(B) = 30

D

Tr.(B) = 15

Answer

det (B) = 200, Tr.(B) = 30

Explanation

Solution

We are given Tr(A1)=3Tr(A^{-1}) = 3 and det(A1)=15det(A^{-1}) = \frac{1}{5}.

From the property det(A1)=1det(A)det(A^{-1}) = \frac{1}{det(A)}, we have det(A)=1det(A1)=11/5=5det(A) = \frac{1}{det(A^{-1})} = \frac{1}{1/5} = 5.

We are given the equation (A1B1A)1=2(adjA)(A^{-1}B^{-1}A)^{-1} = 2(adj A).

Using the property (XYZ)1=Z1Y1X1(XYZ)^{-1} = Z^{-1}Y^{-1}X^{-1}, we have (A1B1A)1=A1(B1)1(A1)1=A1BA(A^{-1}B^{-1}A)^{-1} = A^{-1}(B^{-1})^{-1}(A^{-1})^{-1} = A^{-1}BA.

Using the property adjP=det(P)P1adj P = det(P) P^{-1}, we have adjA=det(A)A1adj A = det(A) A^{-1}. Substituting det(A)=5det(A) = 5, we get adjA=5A1adj A = 5 A^{-1}.

So, the given equation becomes: A1BA=2(5A1)A^{-1}BA = 2(5 A^{-1}) A1BA=10A1A^{-1}BA = 10 A^{-1}

To solve for B, we can pre-multiply both sides by A: A(A1BA)=A(10A1)A(A^{-1}BA) = A(10 A^{-1}) (AA1)BA=10(AA1)(AA^{-1})BA = 10 (AA^{-1}) Since A is invertible (as det(A)=50det(A) = 5 \neq 0), AA1=I3AA^{-1} = I_3, where I3I_3 is the identity matrix of order 3. I3BA=10I3I_3 BA = 10 I_3 BA=10I3BA = 10 I_3

From BA=10I3BA = 10 I_3, we can find the determinant of B. Taking the determinant of both sides: det(BA)=det(10I3)det(BA) = det(10 I_3) Using the properties det(XY)=det(X)det(Y)det(XY) = det(X)det(Y) and det(cIn)=cndet(In)det(cI_n) = c^n det(I_n) for a scalar c and identity matrix InI_n: det(B)det(A)=103det(I3)det(B)det(A) = 10^3 det(I_3) det(B)×5=1000×1det(B) \times 5 = 1000 \times 1 det(B)=10005=200det(B) = \frac{1000}{5} = 200.

Now, let's find the trace of B. From BA=10I3BA = 10 I_3, we can post-multiply by A1A^{-1} (since A is invertible): BAA1=10I3A1BAA^{-1} = 10 I_3 A^{-1} BI3=10A1B I_3 = 10 A^{-1} B=10A1B = 10 A^{-1}

Now, take the trace of B: Tr(B)=Tr(10A1)Tr(B) = Tr(10 A^{-1}) Using the property Tr(cA)=cTr(A)Tr(cA) = c Tr(A): Tr(B)=10Tr(A1)Tr(B) = 10 Tr(A^{-1}) We are given that Tr(A1)=3Tr(A^{-1}) = 3. Tr(B)=10×3=30Tr(B) = 10 \times 3 = 30.

So, we have found that det(B)=200det(B) = 200 and Tr(B)=30Tr(B) = 30.