Solveeit Logo

Question

Question: If $y = x^{n-1} \ln x$ satisfies $x^2 \frac{d^2y}{dx^2} + a_n x \frac{dy}{dx} + b_n y = 0$ and $f(x...

If y=xn1lnxy = x^{n-1} \ln x satisfies

x2d2ydx2+anxdydx+bny=0x^2 \frac{d^2y}{dx^2} + a_n x \frac{dy}{dx} + b_n y = 0 and f(x)=cot1x21+sec1xx21+csc1xf(x) = \cot^{-1} \sqrt{x^2 - 1} + \sec^{-1} \frac{x}{\sqrt{x^2 - 1}} + \csc^{-1} x,

then which of the following options is/are correct?

A

f(2)=32f'(2) = -\frac{\sqrt{3}}{2}

B

f(2)=123f'(-2) = -\frac{1}{2\sqrt{3}}

C

a4+b4=4a_4 + b_4 = 4

D

a3b3=7a_3 - b_3 = 7

Answer

(A), (B), (C)

Explanation

Solution

The question has two parts. First, we need to find the coefficients ana_n and bnb_n of a differential equation. Second, we need to evaluate the derivative of a function involving inverse trigonometric functions.

Part 1: Differential Equation

The given differential equation is x2d2ydx2+anxdydx+bny=0x^2 \frac{d^2y}{dx^2} + a_n x \frac{dy}{dx} + b_n y = 0, and y=xn1lnxy = x^{n-1} \ln x. We calculate the first and second derivatives of yy:

dydx=ddx(xn1lnx)=(n1)xn2lnx+xn11x=(n1)xn2lnx+xn2\frac{dy}{dx} = \frac{d}{dx}(x^{n-1} \ln x) = (n-1)x^{n-2} \ln x + x^{n-1} \cdot \frac{1}{x} = (n-1)x^{n-2} \ln x + x^{n-2}.

d2ydx2=ddx((n1)xn2lnx+xn2)=(n1)((n2)xn3lnx+xn21x)+(n2)xn3=(n1)(n2)xn3lnx+(n1)xn3+(n2)xn3=(n1)(n2)xn3lnx+(2n3)xn3\frac{d^2y}{dx^2} = \frac{d}{dx}((n-1)x^{n-2} \ln x + x^{n-2}) = (n-1)((n-2)x^{n-3} \ln x + x^{n-2} \cdot \frac{1}{x}) + (n-2)x^{n-3} = (n-1)(n-2)x^{n-3} \ln x + (n-1)x^{n-3} + (n-2)x^{n-3} = (n-1)(n-2)x^{n-3} \ln x + (2n-3)x^{n-3}.

Substitute yy, dydx\frac{dy}{dx}, and d2ydx2\frac{d^2y}{dx^2} into the differential equation:

x2[(n1)(n2)xn3lnx+(2n3)xn3]+anx[(n1)xn2lnx+xn2]+bn[xn1lnx]=0x^2 [(n-1)(n-2)x^{n-3} \ln x + (2n-3)x^{n-3}] + a_n x [(n-1)x^{n-2} \ln x + x^{n-2}] + b_n [x^{n-1} \ln x] = 0

Multiply by powers of xx:

(n1)(n2)xn1lnx+(2n3)xn1+an(n1)xn1lnx+anxn1+bnxn1lnx=0(n-1)(n-2)x^{n-1} \ln x + (2n-3)x^{n-1} + a_n (n-1)x^{n-1} \ln x + a_n x^{n-1} + b_n x^{n-1} \ln x = 0

Assuming x0x \neq 0, divide by xn1x^{n-1}:

(n1)(n2)lnx+(2n3)+an(n1)lnx+an+bnlnx=0(n-1)(n-2) \ln x + (2n-3) + a_n (n-1) \ln x + a_n + b_n \ln x = 0

Group terms by lnx\ln x:

[(n1)(n2)+an(n1)+bn]lnx+[(2n3)+an]=0[(n-1)(n-2) + a_n(n-1) + b_n] \ln x + [(2n-3) + a_n] = 0

This equation must hold for all xx in the domain of lnx\ln x (x>0x > 0). Thus, the coefficients of lnx\ln x and the constant term must be zero.

Coefficient of lnx\ln x: (n1)(n2)+an(n1)+bn=0    n23n+2+an(n1)+bn=0(n-1)(n-2) + a_n(n-1) + b_n = 0 \implies n^2 - 3n + 2 + a_n(n-1) + b_n = 0.

Constant term: 2n3+an=0    an=32n2n-3 + a_n = 0 \implies a_n = 3 - 2n.

Substitute ana_n into the first equation:

n23n+2+(32n)(n1)+bn=0n^2 - 3n + 2 + (3 - 2n)(n-1) + b_n = 0

n23n+2+(3n32n2+2n)+bn=0n^2 - 3n + 2 + (3n - 3 - 2n^2 + 2n) + b_n = 0

n23n+22n2+5n3+bn=0n^2 - 3n + 2 - 2n^2 + 5n - 3 + b_n = 0

n2+2n1+bn=0    bn=n22n+1=(n1)2-n^2 + 2n - 1 + b_n = 0 \implies b_n = n^2 - 2n + 1 = (n-1)^2.

So, an=32na_n = 3 - 2n and bn=(n1)2b_n = (n-1)^2.

Check options (C) and (D):

(C) a4+b4=4a_4 + b_4 = 4. For n=4n=4, a4=32(4)=5a_4 = 3 - 2(4) = -5, b4=(41)2=9b_4 = (4-1)^2 = 9. a4+b4=5+9=4a_4 + b_4 = -5 + 9 = 4. Option (C) is correct.

(D) a3b3=7a_3 - b_3 = 7. For n=3n=3, a3=32(3)=3a_3 = 3 - 2(3) = -3, b3=(31)2=4b_3 = (3-1)^2 = 4. a3b3=34=7a_3 - b_3 = -3 - 4 = -7. Option (D) is incorrect.

Part 2: Derivative of f(x)f(x)

The function is f(x)=cot1x21+sec1xx21+csc1xf(x) = \cot^{-1} \sqrt{x^2 - 1} + \sec^{-1} \frac{x}{\sqrt{x^2 - 1}} + \csc^{-1} x. The domain of f(x)f(x) requires x210x^2 - 1 \ge 0 and x1|x| \ge 1, which is x1|x| \ge 1. The derivative f(x)f'(x) is defined for x>1|x| > 1.

Consider x>1x > 1. Let x=secθx = \sec \theta, where θ(0,π/2)\theta \in (0, \pi/2).

x21=sec2θ1=tanθ=tanθ\sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = |\tan \theta| = \tan \theta (since θ(0,π/2)\theta \in (0, \pi/2)).

cot1x21=cot1(tanθ)=cot1(cot(π/2θ))=π/2θ=π/2sec1x\cot^{-1} \sqrt{x^2 - 1} = \cot^{-1} (\tan \theta) = \cot^{-1} (\cot (\pi/2 - \theta)) = \pi/2 - \theta = \pi/2 - \sec^{-1} x.

xx21=secθtanθ=cscθ\frac{x}{\sqrt{x^2 - 1}} = \frac{\sec \theta}{\tan \theta} = \csc \theta.

sec1xx21=sec1(cscθ)=sec1(sec(π/2θ))=π/2θ=π/2sec1x\sec^{-1} \frac{x}{\sqrt{x^2 - 1}} = \sec^{-1} (\csc \theta) = \sec^{-1} (\sec (\pi/2 - \theta)) = \pi/2 - \theta = \pi/2 - \sec^{-1} x.

csc1x=csc1(secθ)=csc1(csc(π/2θ))=π/2θ=π/2sec1x\csc^{-1} x = \csc^{-1} (\sec \theta) = \csc^{-1} (\csc (\pi/2 - \theta)) = \pi/2 - \theta = \pi/2 - \sec^{-1} x.

For x>1x > 1, f(x)=(π/2sec1x)+(π/2sec1x)+(π/2sec1x)=3π/23sec1xf(x) = (\pi/2 - \sec^{-1} x) + (\pi/2 - \sec^{-1} x) + (\pi/2 - \sec^{-1} x) = 3\pi/2 - 3\sec^{-1} x.

f(x)=ddx(3π/23sec1x)=031xx21f'(x) = \frac{d}{dx}(3\pi/2 - 3\sec^{-1} x) = 0 - 3 \cdot \frac{1}{|x|\sqrt{x^2 - 1}}. For x>1x > 1, x=x|x|=x, so f(x)=3xx21f'(x) = -\frac{3}{x\sqrt{x^2 - 1}}.

Check option (A): f(2)=32f'(2) = -\frac{\sqrt{3}}{2}. Since 2>12 > 1, we use f(x)=3xx21f'(x) = -\frac{3}{x\sqrt{x^2 - 1}}.

f(2)=32221=323=3323=32f'(2) = -\frac{3}{2\sqrt{2^2 - 1}} = -\frac{3}{2\sqrt{3}} = -\frac{3\sqrt{3}}{2 \cdot 3} = -\frac{\sqrt{3}}{2}. Option (A) is correct.

Consider x<1x < -1. Let x=secθx = \sec \theta, where θ(π/2,π)\theta \in (\pi/2, \pi).

x21=sec2θ1=tanθ=tanθ\sqrt{x^2 - 1} = \sqrt{\sec^2 \theta - 1} = |\tan \theta| = -\tan \theta (since θ(π/2,π)\theta \in (\pi/2, \pi)).

cot1x21=cot1(tanθ)=cot1(cot(πθ))=πθ=πsec1x\cot^{-1} \sqrt{x^2 - 1} = \cot^{-1} (-\tan \theta) = \cot^{-1} (\cot (\pi - \theta)) = \pi - \theta = \pi - \sec^{-1} x.

xx21=secθtanθ=cscθ\frac{x}{\sqrt{x^2 - 1}} = \frac{\sec \theta}{-\tan \theta} = -\csc \theta.

Since x<1x < -1, xx21<1\frac{x}{\sqrt{x^2 - 1}} < -1. Let y=cscθy = -\csc \theta. Since θ(π/2,π)\theta \in (\pi/2, \pi), sinθ(0,1]\sin \theta \in (0, 1], cscθ[1,)\csc \theta \in [1, \infty). So y(,1]y \in (-\infty, -1].

f(x)=ddxcot1x21+ddxsec1xx21+ddxcsc1xf'(x) = \frac{d}{dx} \cot^{-1} \sqrt{x^2 - 1} + \frac{d}{dx} \sec^{-1} \frac{x}{\sqrt{x^2 - 1}} + \frac{d}{dx} \csc^{-1} x.

For x>1|x| > 1:

ddxcot1x21=11+(x21)2ddxx21=11+x212x2x21=1x2xx21=1xx21\frac{d}{dx} \cot^{-1} \sqrt{x^2 - 1} = -\frac{1}{1 + (\sqrt{x^2 - 1})^2} \cdot \frac{d}{dx} \sqrt{x^2 - 1} = -\frac{1}{1 + x^2 - 1} \cdot \frac{2x}{2\sqrt{x^2 - 1}} = -\frac{1}{x^2} \cdot \frac{x}{\sqrt{x^2 - 1}} = -\frac{1}{x\sqrt{x^2 - 1}}.

ddxsec1u=1uu21dudx\frac{d}{dx} \sec^{-1} u = \frac{1}{|u|\sqrt{u^2 - 1}} \frac{du}{dx}, where u=xx21u = \frac{x}{\sqrt{x^2 - 1}}.

dudx=x211x2x2x21x21=x21x2x21x21=1(x21)x21\frac{du}{dx} = \frac{\sqrt{x^2 - 1} \cdot 1 - x \cdot \frac{2x}{2\sqrt{x^2 - 1}}}{x^2 - 1} = \frac{\frac{x^2 - 1 - x^2}{\sqrt{x^2 - 1}}}{x^2 - 1} = \frac{-1}{(x^2 - 1)\sqrt{x^2 - 1}}.

u=xx21|u| = |\frac{x}{\sqrt{x^2 - 1}}|. u21=x2x211=x2(x21)x21=1x21u^2 - 1 = \frac{x^2}{x^2 - 1} - 1 = \frac{x^2 - (x^2 - 1)}{x^2 - 1} = \frac{1}{x^2 - 1}. u21=1x21=1x21\sqrt{u^2 - 1} = \sqrt{\frac{1}{x^2 - 1}} = \frac{1}{\sqrt{x^2 - 1}}.

ddxsec1xx21=1xx211x211(x21)x21=x21x1x211(x21)x21=x21x1(x21)x21=1xx21\frac{d}{dx} \sec^{-1} \frac{x}{\sqrt{x^2 - 1}} = \frac{1}{|\frac{x}{\sqrt{x^2 - 1}}|\sqrt{\frac{1}{x^2 - 1}}} \cdot \frac{-1}{(x^2 - 1)\sqrt{x^2 - 1}} = \frac{\sqrt{x^2 - 1}}{|x| \cdot \frac{1}{\sqrt{x^2 - 1}}} \cdot \frac{-1}{(x^2 - 1)\sqrt{x^2 - 1}} = \frac{x^2 - 1}{|x|} \cdot \frac{-1}{(x^2 - 1)\sqrt{x^2 - 1}} = -\frac{1}{|x|\sqrt{x^2 - 1}}.

ddxcsc1x=1xx21\frac{d}{dx} \csc^{-1} x = -\frac{1}{|x|\sqrt{x^2 - 1}}.

So, for x>1|x| > 1, f(x)=1xx211xx211xx21f'(x) = -\frac{1}{x\sqrt{x^2 - 1}} - \frac{1}{|x|\sqrt{x^2 - 1}} - \frac{1}{|x|\sqrt{x^2 - 1}}.

If x>1x > 1, x=x|x| = x, so f(x)=1xx211xx211xx21=3xx21f'(x) = -\frac{1}{x\sqrt{x^2 - 1}} - \frac{1}{x\sqrt{x^2 - 1}} - \frac{1}{x\sqrt{x^2 - 1}} = -\frac{3}{x\sqrt{x^2 - 1}}. This matches our previous result for x>1x > 1.

If x<1x < -1, x=x|x| = -x, so f(x)=1xx211(x)x211(x)x21=1xx21+1xx21+1xx21=1xx21f'(x) = -\frac{1}{x\sqrt{x^2 - 1}} - \frac{1}{(-x)\sqrt{x^2 - 1}} - \frac{1}{(-x)\sqrt{x^2 - 1}} = -\frac{1}{x\sqrt{x^2 - 1}} + \frac{1}{x\sqrt{x^2 - 1}} + \frac{1}{x\sqrt{x^2 - 1}} = \frac{1}{x\sqrt{x^2 - 1}}.

Check option (B): f(2)=123f'(-2) = -\frac{1}{2\sqrt{3}}. Since 2<1-2 < -1, we use f(x)=1xx21f'(x) = \frac{1}{x\sqrt{x^2 - 1}}.

f(2)=12(2)21=1241=123=123f'(-2) = \frac{1}{-2\sqrt{(-2)^2 - 1}} = \frac{1}{-2\sqrt{4 - 1}} = \frac{1}{-2\sqrt{3}} = -\frac{1}{2\sqrt{3}}. Option (B) is correct.