Solveeit Logo

Question

Question: Find the parametric equation of the circle $x^2 + y^2 - 6x + 4y - 3 = 0$....

Find the parametric equation of the circle x2+y26x+4y3=0x^2 + y^2 - 6x + 4y - 3 = 0.

Answer

x=3+4\cos t,\quad y=-2+4\sin t, \quad 0\le t\le2\pi.

Explanation

Solution

Step 1. Complete the Square

Given:

x2+y26x+4y3=0x^2+y^2-6x+4y-3=0

Group x and y terms:

(x26x)+(y2+4y)=3(x^2-6x)+(y^2+4y)=3

Complete the square for x:

x26x=(x26x+9)9=(x3)29x^2-6x=(x^2-6x+9)-9=(x-3)^2-9

Complete the square for y:

y2+4y=(y2+4y+4)4=(y+2)24y^2+4y=(y^2+4y+4)-4=(y+2)^2-4

Thus,

(x3)29+(y+2)24=3(x3)2+(y+2)2=16(x-3)^2-9+(y+2)^2-4=3 \quad \Rightarrow \quad (x-3)^2+(y+2)^2=16

Step 2. Identify the Center and Radius

Center: (3,2)(3,-2) Radius: r=16=4r=\sqrt{16}=4

Step 3. Write the Parametric Equations

The standard parametric form of a circle:

x=rcost+x0,y=rsint+y0x = r\cos t + x_0, \quad y = r\sin t + y_0

Here, x0=3x_0=3, y0=2y_0=-2, and r=4r=4. Hence,

x=3+4cost,y=2+4sint,0t2π.x = 3+4\cos t, \quad y = -2+4\sin t, \quad 0\le t\le 2\pi.

Minimal Explanation:

Complete the square to get (x3)2+(y+2)2=16(x-3)^2+(y+2)^2=16. The center is (3,2)(3,-2) and radius is 44. Thus, the parametric equations are x=3+4costx=3+4\cos t and y=2+4sinty=-2+4\sin t.