Question
Question: Find the parametric equation of the circle $x^2 + y^2 - 6x + 4y - 3 = 0$....
Find the parametric equation of the circle x2+y2−6x+4y−3=0.
Answer
x=3+4\cos t,\quad y=-2+4\sin t, \quad 0\le t\le2\pi.
Explanation
Solution
Step 1. Complete the Square
Given:
x2+y2−6x+4y−3=0Group x and y terms:
(x2−6x)+(y2+4y)=3Complete the square for x:
x2−6x=(x2−6x+9)−9=(x−3)2−9Complete the square for y:
y2+4y=(y2+4y+4)−4=(y+2)2−4Thus,
(x−3)2−9+(y+2)2−4=3⇒(x−3)2+(y+2)2=16Step 2. Identify the Center and Radius
Center: (3,−2) Radius: r=16=4
Step 3. Write the Parametric Equations
The standard parametric form of a circle:
x=rcost+x0,y=rsint+y0Here, x0=3, y0=−2, and r=4. Hence,
x=3+4cost,y=−2+4sint,0≤t≤2π.Minimal Explanation:
Complete the square to get (x−3)2+(y+2)2=16. The center is (3,−2) and radius is 4. Thus, the parametric equations are x=3+4cost and y=−2+4sint.