Solveeit Logo

Question

Question: Calculate the largest possible electrostatic energy in 1 cm³ volume of air. The dielectric breakdown...

Calculate the largest possible electrostatic energy in 1 cm³ volume of air. The dielectric breakdown of air happens when the field exceeds 3 × 10⁶ V/m.

A

39.6 J

B

39.6 μJ

C

3.96 J

D

3.96 μJ

Answer

39.6 μJ

Explanation

Solution

The problem asks us to calculate the largest possible electrostatic energy stored in a 1 cm³ volume of air before dielectric breakdown occurs.

1. Identify Given Parameters:

  • Volume of air, V=1cm3=1×(102m)3=106m3V = 1 \, \text{cm}^3 = 1 \times (10^{-2} \, \text{m})^3 = 10^{-6} \, \text{m}^3.
  • Dielectric breakdown field of air, Emax=3×106V/mE_{max} = 3 \times 10^6 \, \text{V/m}.

2. Identify Relevant Physical Constants:

  • The permittivity of air can be approximated by the permittivity of free space, ϵ0\epsilon_0. ϵ08.85×1012F/m\epsilon_0 \approx 8.85 \times 10^{-12} \, \text{F/m}. To match the given options precisely, we can use the approximation ϵ0=8.8×1012F/m\epsilon_0 = 8.8 \times 10^{-12} \, \text{F/m}, which is sometimes used in problems.

3. Formula for Electrostatic Energy Density:

The electrostatic energy density (uu) in a dielectric medium is given by: u=12ϵE2u = \frac{1}{2} \epsilon E^2 where ϵ\epsilon is the permittivity of the medium and EE is the electric field strength.

4. Calculate Maximum Energy Density:

The largest possible electrostatic energy occurs when the electric field reaches its maximum possible value, which is the dielectric breakdown field EmaxE_{max}. So, the maximum energy density umaxu_{max} is: umax=12ϵ0Emax2u_{max} = \frac{1}{2} \epsilon_0 E_{max}^2

Substitute the values: umax=12×(8.8×1012F/m)×(3×106V/m)2u_{max} = \frac{1}{2} \times (8.8 \times 10^{-12} \, \text{F/m}) \times (3 \times 10^6 \, \text{V/m})^2 umax=12×8.8×1012×(9×1012)J/m3u_{max} = \frac{1}{2} \times 8.8 \times 10^{-12} \times (9 \times 10^{12}) \, \text{J/m}^3 umax=4.4×9×10(12+12)J/m3u_{max} = 4.4 \times 9 \times 10^{(-12+12)} \, \text{J/m}^3 umax=39.6×100J/m3u_{max} = 39.6 \times 10^0 \, \text{J/m}^3 umax=39.6J/m3u_{max} = 39.6 \, \text{J/m}^3

5. Calculate Total Electrostatic Energy:

The total electrostatic energy UmaxU_{max} in the given volume VV is the product of the maximum energy density and the volume: Umax=umax×VU_{max} = u_{max} \times V Umax=(39.6J/m3)×(106m3)U_{max} = (39.6 \, \text{J/m}^3) \times (10^{-6} \, \text{m}^3) Umax=39.6×106JU_{max} = 39.6 \times 10^{-6} \, \text{J} Umax=39.6μJU_{max} = 39.6 \, \mu\text{J}

Comparing this result with the given options, option B matches our calculated value.