Solveeit Logo

Question

Question: Let $P(-2, -1, 1)$ and $Q(\frac{56}{17}, \frac{43}{17}, \frac{111}{17})$ be the vertices of the rhom...

Let P(2,1,1)P(-2, -1, 1) and Q(5617,4317,11117)Q(\frac{56}{17}, \frac{43}{17}, \frac{111}{17}) be the vertices of the rhombus PRQSPRQS. If the direction ratios of the diagonal RSRS are α,1,β\alpha, -1, \beta, where both α\alpha and β\beta are integers of minimum absolute values, then α2+β2\alpha^2 + \beta^2 is equal to

Answer

450

Explanation

Solution

Here's how to solve the problem:

  1. Midpoint: Find the midpoint MM of PQPQ, which is also the midpoint of RSRS: M=(2+56172,1+43172,1+111172)=(1117,1317,6417).M = \left(\frac{-2 + \frac{56}{17}}{2},\, \frac{-1 + \frac{43}{17}}{2},\, \frac{1 + \frac{111}{17}}{2}\right) = \left(\frac{11}{17},\, \frac{13}{17},\, \frac{64}{17}\right).

  2. Direction Vector: Compute the direction vector of PQPQ: PQ=QP=(5617(2),4317(1),111171)=(9017,6017,9417).\vec{PQ} = Q-P = \left(\frac{56}{17} - (-2),\, \frac{43}{17} - (-1),\, \frac{111}{17} - 1\right) = \left(\frac{90}{17},\, \frac{60}{17},\, \frac{94}{17}\right).

  3. Perpendicularity: Since RSRS (with direction ratios (α,1,β)(\alpha, -1, \beta)) is perpendicular to PQPQ, their dot product is zero: (α,1,β)(9017,6017,9417)=0.(\alpha,-1,\beta) \cdot \left(\tfrac{90}{17},\tfrac{60}{17},\tfrac{94}{17}\right) = 0. This simplifies to: 90α60+94β=0    45α+47β=30.90\alpha - 60 + 94\beta = 0 \implies 45\alpha + 47\beta = 30.

  4. Diophantine Equation: Solve the Diophantine equation 45α+47β=3045\alpha + 47\beta = 30 for integers α\alpha and β\beta. Using the Extended Euclidean algorithm, we find a particular solution. The general solution is: α=690+47t,β=66045t,tZ.\alpha = 690 + 47t, \quad \beta = -660 - 45t, \quad t\in\mathbb{Z}. Choosing t=15t=-15 yields: α=690705=15,β=660+675=15.\alpha = 690 - 705 = -15, \quad \beta = -660 + 675 = 15.

  5. Final Calculation: Compute α2+β2\alpha^2 + \beta^2: α2+β2=(15)2+152=225+225=450.\alpha^2+\beta^2 = (-15)^2 + 15^2 = 225+225 = 450.

Therefore, α2+β2=450\alpha^2 + \beta^2 = 450.