Question
Question: $\text{cosec}\left[2\cot^{-1}(5)+\cos^{-1}\left(\frac{4}{5}\right)\right]$ is equal to:...
cosec[2cot−1(5)+cos−1(54)] is equal to:

3356
5665
3365
5675
5665
Solution
Let E=cosec[2cot−1(5)+cos−1(54)]. We need to evaluate the expression inside the cosecant function. Let θ=2cot−1(5)+cos−1(54).
First, let A=2cot−1(5)=2tan−1(51). Using the double angle formula for the inverse tangent function, we have:
A=tan−1(1−(51)22⋅51)=tan−1(1−25152)=tan−1(252452)=tan−1(52⋅2425)=tan−1(125)
Next, let B=cos−1(54). Since cos(B)=54, we can find sin(B) using the Pythagorean identity: sin2(B)+cos2(B)=1. So, sin(B)=1−(54)2=1−2516=259=53. Therefore, B=tan−1(43).
Now, we have θ=A+B=tan−1(125)+tan−1(43). Using the tangent addition formula:
θ=tan−1(1−125⋅43125+43)=tan−1(1−4815125+129)=tan−1(48331214)=tan−1(67⋅3348)=tan−1(337⋅8)=tan−1(3356)
Finally, we need to find cosec(θ)=cosec(tan−1(3356)). Since tan(θ)=3356, we can form a right triangle with opposite side 56 and adjacent side 33. The hypotenuse is 562+332=3136+1089=4225=65. Then, sin(θ)=6556, and cosec(θ)=sin(θ)1=5665.
Therefore, E=5665.