Solveeit Logo

Question

Question: Let A be a matrix such that adj (adj A) = $\begin{bmatrix} 5 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{...

Let A be a matrix such that adj (adj A) = [521310221]\begin{bmatrix} 5 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix} then the value of det (3A1)(3A^{-1}) is

A

1

B

311/43^{11/4}

C

33/43^{3/4}

D

9

Answer

311/43^{11/4}

Explanation

Solution

The given matrix is adj(adjA)=B=[521310221]adj(adj A) = B = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}. The order of the matrix A is determined by the order of adj(adjA)adj(adj A). Since B is a 3×33 \times 3 matrix, A must also be a 3×33 \times 3 matrix. Let the order of A be n=3n=3.

We need to find the value of det(3A1)det(3A^{-1}). Using the property det(kA)=kndet(A)det(kA) = k^n det(A), we have det(3A1)=3ndet(A1)det(3A^{-1}) = 3^n det(A^{-1}). For n=3n=3, det(3A1)=33det(A1)det(3A^{-1}) = 3^3 det(A^{-1}). Using the property det(A1)=1det(A)det(A^{-1}) = \frac{1}{det(A)}, we have det(3A1)=331det(A)det(3A^{-1}) = 3^3 \frac{1}{det(A)}. To find the value, we need to determine det(A)det(A).

We are given adj(adjA)=Badj(adj A) = B. For a square matrix A of order n2n \ge 2, we have the property adj(adjA)=(detA)n2Aadj(adj A) = (det A)^{n-2} A. For n=3n=3, this property becomes adj(adjA)=(detA)32A=(detA)Aadj(adj A) = (det A)^{3-2} A = (det A) A. So, we have (detA)A=B(det A) A = B.

Taking the determinant of both sides: det((detA)A)=det(B)det((det A) A) = det(B). Using the property det(kA)=kndet(A)det(kA) = k^n det(A) with k=detAk=det A and n=3n=3: (detA)3det(A)=det(B)(det A)^3 det(A) = det(B). (detA)4=det(B)(det A)^4 = det(B).

Now, we calculate the determinant of matrix B: B=[521310221]B = \begin{bmatrix} 5 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix} det(B)=5102123021+13122det(B) = 5 \cdot \begin{vmatrix} 1 & 0 \\ 2 & 1 \end{vmatrix} - 2 \cdot \begin{vmatrix} 3 & 0 \\ 2 & 1 \end{vmatrix} + 1 \cdot \begin{vmatrix} 3 & 1 \\ 2 & 2 \end{vmatrix} det(B)=5(1×10×2)2(3×10×2)+1(3×21×2)det(B) = 5(1 \times 1 - 0 \times 2) - 2(3 \times 1 - 0 \times 2) + 1(3 \times 2 - 1 \times 2) det(B)=5(1)2(3)+1(62)det(B) = 5(1) - 2(3) + 1(6 - 2) det(B)=56+4det(B) = 5 - 6 + 4 det(B)=3det(B) = 3.

Substituting the value of det(B)det(B) into the equation (detA)4=det(B)(det A)^4 = det(B): (detA)4=3(det A)^4 = 3. This equation implies det(A)=±31/4det(A) = \pm 3^{1/4}.

We need to find det(3A1)=331det(A)det(3A^{-1}) = 3^3 \frac{1}{det(A)}. If det(A)=31/4det(A) = 3^{1/4}, then det(3A1)=33131/4=331/4=312/41/4=311/4det(3A^{-1}) = 3^3 \frac{1}{3^{1/4}} = 3^{3 - 1/4} = 3^{12/4 - 1/4} = 3^{11/4}. If det(A)=31/4det(A) = -3^{1/4}, then det(3A1)=33131/4=311/4det(3A^{-1}) = 3^3 \frac{1}{-3^{1/4}} = -3^{11/4}.

The given options are all positive values. This suggests that either the problem assumes det(A)>0det(A) > 0, or the context implies it. Assuming det(A)>0det(A) > 0, we take det(A)=31/4det(A) = 3^{1/4}.

Then, det(3A1)=311/4det(3A^{-1}) = 3^{11/4}.

Comparing this with the given options: (1) 1 (2) 311/43^{11/4} (3) 33/43^{3/4} (4) 9

The calculated value 311/43^{11/4} matches option (2).

The final answer is 311/4\boxed{3^{11/4}}.

Explanation of the solution:

  1. Identify the order of matrix A from the given matrix adj(adjA)adj(adj A). Since adj(adjA)adj(adj A) is 3×33 \times 3, A is 3×33 \times 3 (order n=3n=3).
  2. Use the property det(kA)=kndet(A)det(kA) = k^n det(A) to express det(3A1)det(3A^{-1}) in terms of det(A)det(A): det(3A1)=33det(A1)=33/det(A)det(3A^{-1}) = 3^3 det(A^{-1}) = 3^3/det(A).
  3. Use the property adj(adjA)=(detA)n2Aadj(adj A) = (det A)^{n-2} A. For n=3n=3, this is adj(adjA)=(detA)Aadj(adj A) = (det A) A.
  4. Take the determinant of both sides of (detA)A=adj(adjA)(det A) A = adj(adj A). This gives (detA)ndet(A)=det(adj(adjA))(det A)^n det(A) = det(adj(adj A)), which simplifies to (detA)4=det(adj(adjA))(det A)^4 = det(adj(adj A)).
  5. Calculate the determinant of the given matrix adj(adjA)adj(adj A). The determinant is 3.
  6. Solve (detA)4=3(det A)^4 = 3 for det(A)det(A). This gives det(A)=±31/4det(A) = \pm 3^{1/4}.
  7. Assuming det(A)>0det(A) > 0 (based on the positive options), take det(A)=31/4det(A) = 3^{1/4}.
  8. Substitute the value of det(A)det(A) into the expression for det(3A1)det(3A^{-1}): det(3A1)=33/31/4=311/4det(3A^{-1}) = 3^3 / 3^{1/4} = 3^{11/4}.
  9. Match the result with the given options.

The final answer is 311/4\boxed{3^{11/4}}.