Solveeit Logo

Question

Question: If $\vec{a}=\hat{i}+2\hat{j}+\hat{k}$, $\vec{b}=3(\hat{i}-\hat{j}+\hat{k})$ and $\vec{c}$ be the vec...

If a=i^+2j^+k^\vec{a}=\hat{i}+2\hat{j}+\hat{k}, b=3(i^j^+k^)\vec{b}=3(\hat{i}-\hat{j}+\hat{k}) and c\vec{c} be the vector such that a×c=b\vec{a}\times\vec{c}=\vec{b} and ac=3\vec{a}\cdot\vec{c}=3, then a((c×b)bc)\vec{a}\cdot((\vec{c}\times\vec{b})-\vec{b}-\vec{c}) is equal to

A

32

B

24

C

20

D

36

Answer

24

Explanation

Solution

Given:

a=i^+2j^+k^\vec{a}=\hat{i}+2\hat{j}+\hat{k}, b=3(i^j^+k^)\vec{b}=3(\hat{i}-\hat{j}+\hat{k}), a×c=b\vec{a}\times \vec{c}=\vec{b}, ac=3\vec{a}\cdot \vec{c}=3.

We need to find S=a((c×b)bc)S=\vec{a}\cdot((\vec{c}\times\vec{b})-\vec{b}-\vec{c}).

Step 1: Write SS as:

S=a(c×b)(I)abacS=\underbrace{\vec{a}\cdot(\vec{c}\times\vec{b})}_{(I)} - \vec{a}\cdot\vec{b} - \vec{a}\cdot\vec{c}.

Since

ab=a(a×c)=0\vec{a}\cdot\vec{b}=\vec{a}\cdot(\vec{a}\times\vec{c})=0 (dot product of a vector with its cross product is zero),

and ac=3\vec{a}\cdot\vec{c}=3, we get

S=a(c×b)3S=\vec{a}\cdot(\vec{c}\times\vec{b}) - 3.

Step 2: Note that b=a×c\vec{b}=\vec{a}\times\vec{c}. Then

a(c×b)=a(c×(a×c))\vec{a}\cdot(\vec{c}\times\vec{b}) = \vec{a}\cdot(\vec{c}\times(\vec{a}\times\vec{c})).

Using the vector triple product identity:

c×(a×c)=(cc)a(ca)c\vec{c}\times(\vec{a}\times\vec{c}) = (\vec{c}\cdot\vec{c})\vec{a} - (\vec{c}\cdot\vec{a})\vec{c},

we have

a[(cc)a(ca)c]=(cc)(aa)(ca)2\vec{a}\cdot\Bigl[(\vec{c}\cdot\vec{c})\vec{a} - (\vec{c}\cdot\vec{a})\vec{c}\Bigr] = (\vec{c}\cdot\vec{c})(\vec{a}\cdot\vec{a}) - (\vec{c}\cdot\vec{a})^2.

Given:

aa=12+22+12=6\vec{a}\cdot\vec{a} = 1^2+2^2+1^2=6, ac=3\vec{a}\cdot\vec{c}=3.

Let c2=cc|\vec{c}|^2 = \vec{c}\cdot\vec{c}. Then

a(c×b)=6c29\vec{a}\cdot(\vec{c}\times\vec{b}) = 6|\vec{c}|^2 - 9.

Thus,

S=6c293=6c212S=6|\vec{c}|^2 - 9 - 3 = 6|\vec{c}|^2 - 12.

Step 3: Find c2|\vec{c}|^2 using the relation from a×c=b\vec{a}\times \vec{c}=\vec{b}.

The magnitude of the cross product is:

a×c=acsinθ|\vec{a}\times\vec{c}|=|\vec{a}||\vec{c}|\sin\theta,

and since b=3(i^j^+k^)\vec{b}=3(\hat{i}-\hat{j}+\hat{k}),

b=312+(1)2+12=33|\vec{b}|=3\sqrt{1^2+(-1)^2+1^2}=3\sqrt{3}.

Thus,

acsinθ=33|\vec{a}|\,|\vec{c}|\sin\theta=3\sqrt{3}.

Also, from the dot product:

ac=accosθ=3\vec{a}\cdot\vec{c}=|\vec{a}||\vec{c}|\cos\theta = 3.

Here, a=6|\vec{a}|=\sqrt{6}. Let c=d|\vec{c}|=d. Then:

cosθ=36d\cos\theta=\frac{3}{\sqrt{6}\, d} and sinθ=196d2=6d296d2\sin\theta=\sqrt{1-\frac{9}{6d^2}}=\sqrt{\frac{6d^2-9}{6d^2}}.

Substituting in the cross product magnitude:

6d6d296d2=33\sqrt{6}\, d \cdot \sqrt{\frac{6d^2-9}{6d^2}} = 3\sqrt{3}.

Simplify:

6d29=33    6d29=27    6d2=36    d2=6\sqrt{6d^2-9} = 3\sqrt{3} \implies 6d^2-9=27 \implies 6d^2=36 \implies d^2=6.

Thus, c2=6|\vec{c}|^2=6.

Step 4: Substitute back in SS:

S=6612=3612=24S=6\cdot6-12=36-12=24.

Therefore, the answer is 24.