Question
Question: Let A be the matrix of order 3 x 3 such that |A| = 1, $B = 2A^{-1}$ and $C = \frac{(adj A)}{\sqrt[3]...
Let A be the matrix of order 3 x 3 such that |A| = 1, B=2A−1 and C=32(adjA), then the value of ∣AB2⋅C.1283∣ is
[Note: |A| represent determinant value of matrix A.]

A
8
B
4
C
64
D
None of these
Answer
64
Explanation
Solution
Given:
- A is a 3x3 matrix with |A| = 1
- B=2A−1
- C=32adjA
We need to find the value of ∣AB2⋅C⋅1283∣. We assume that the poorly formatted scalar is actually 32
-
Calculate |B|:
∣B∣=∣2A−1∣=23∣A−1∣=8⋅∣A∣1=8⋅1=8
-
Calculate |C|:
∣C∣=∣32adjA∣=(321)3∣adjA∣=21∣A∣3−1=21∣A∣2=21⋅12=21
-
Calculate ∣AB2C∣:
∣AB2C∣=∣A∣∣B2∣∣C∣=∣A∣⋅∣B∣2⋅∣C∣=1⋅82⋅21=1⋅64⋅21=32
-
**Calculate ∣AB2⋅C⋅1283∣ assuming it is ∣AB2C⋅32∣:
∣AB2⋅C⋅1283∣=∣AB2C⋅32∣=∣AB2C∣⋅(32)3=32⋅2=64
Therefore, ∣AB2⋅C.1283∣=64