Solveeit Logo

Question

Question: Let A be the matrix of order 3 x 3 such that |A| = 1, $B = 2A^{-1}$ and $C = \frac{(adj A)}{\sqrt[3]...

Let A be the matrix of order 3 x 3 such that |A| = 1, B=2A1B = 2A^{-1} and C=(adjA)23C = \frac{(adj A)}{\sqrt[3]{2}}, then the value of AB2C.1283|AB^2 \cdot C.128^3| is

[Note: |A| represent determinant value of matrix A.]

A

8

B

4

C

64

D

None of these

Answer

64

Explanation

Solution

Given:

  • A is a 3x3 matrix with |A| = 1
  • B=2A1B = 2A^{-1}
  • C=adjA23C = \frac{adj A}{\sqrt[3]{2}}

We need to find the value of AB2C1283|AB^2 \cdot C \cdot 128^3|. We assume that the poorly formatted scalar is actually 23\sqrt[3]{2}

  1. Calculate |B|:

    B=2A1=23A1=81A=81=8|B| = |2A^{-1}| = 2^3 |A^{-1}| = 8 \cdot \frac{1}{|A|} = 8 \cdot 1 = 8

  2. Calculate |C|:

    C=adjA23=(123)3adjA=12A31=12A2=1212=12|C| = |\frac{adj A}{\sqrt[3]{2}}| = (\frac{1}{\sqrt[3]{2}})^3 |adj A| = \frac{1}{2} |A|^{3-1} = \frac{1}{2} |A|^2 = \frac{1}{2} \cdot 1^2 = \frac{1}{2}

  3. Calculate AB2C|AB^2C|:

    AB2C=AB2C=AB2C=18212=16412=32|AB^2C| = |A| |B^2| |C| = |A| \cdot |B|^2 \cdot |C| = 1 \cdot 8^2 \cdot \frac{1}{2} = 1 \cdot 64 \cdot \frac{1}{2} = 32

  4. **Calculate AB2C1283|AB^2 \cdot C \cdot 128^3| assuming it is AB2C23|AB^2 C \cdot \sqrt[3]{2}|:

    AB2C1283=AB2C23=AB2C(23)3=322=64|AB^2 \cdot C \cdot 128^3| = |AB^2 C \cdot \sqrt[3]{2}| = |AB^2 C| \cdot (\sqrt[3]{2})^3 = 32 \cdot 2 = 64

Therefore, AB2C.1283=64|AB^2 \cdot C.128^3| = 64