Solveeit Logo

Question

Question: If $\sin \theta = \frac{12}{13}$ then the value of $\frac{2 \cos \theta + 3 \tan \theta}{\sin \theta...

If sinθ=1213\sin \theta = \frac{12}{13} then the value of 2cosθ+3tanθsinθ+tanθ+sinθ\frac{2 \cos \theta + 3 \tan \theta}{\sin \theta + \tan \theta + \sin \theta} is

A

125\frac{12}{5}

B

513\frac{5}{13}

C

259102\frac{259}{102}

D

25965\frac{259}{65}

Answer

No option matches the calculated value

Explanation

Solution

To find the value of the expression 2cosθ+3tanθsinθ+tanθ+sinθ\frac{2 \cos \theta + 3 \tan \theta}{\sin \theta + \tan \theta + \sin \theta}, given sinθ=1213\sin \theta = \frac{12}{13}:

Step 1: Simplify the denominator.

The denominator is sinθ+tanθ+sinθ\sin \theta + \tan \theta + \sin \theta. Combining the sinθ\sin \theta terms, we get 2sinθ+tanθ2 \sin \theta + \tan \theta. So the expression becomes 2cosθ+3tanθ2sinθ+tanθ\frac{2 \cos \theta + 3 \tan \theta}{2 \sin \theta + \tan \theta}.

Step 2: Find the values of cosθ\cos \theta and tanθ\tan \theta.

We are given sinθ=1213\sin \theta = \frac{12}{13}. Using the Pythagorean identity sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1: cos2θ=1sin2θ\cos^2 \theta = 1 - \sin^2 \theta cos2θ=1(1213)2\cos^2 \theta = 1 - \left(\frac{12}{13}\right)^2 cos2θ=1144169\cos^2 \theta = 1 - \frac{144}{169} cos2θ=169144169\cos^2 \theta = \frac{169 - 144}{169} cos2θ=25169\cos^2 \theta = \frac{25}{169} Taking the square root, cosθ=±25169=±513\cos \theta = \pm \sqrt{\frac{25}{169}} = \pm \frac{5}{13}. Since no quadrant is specified, we assume θ\theta is in the first quadrant where all trigonometric ratios are positive. So, cosθ=513\cos \theta = \frac{5}{13}.

Now, calculate tanθ\tan \theta: tanθ=sinθcosθ=12/135/13=125\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{12/13}{5/13} = \frac{12}{5}.

Step 3: Substitute the values into the expression.

Numerator: 2cosθ+3tanθ=2(513)+3(125)2 \cos \theta + 3 \tan \theta = 2 \left(\frac{5}{13}\right) + 3 \left(\frac{12}{5}\right) =1013+365= \frac{10}{13} + \frac{36}{5} To add these fractions, find a common denominator, which is 13×5=6513 \times 5 = 65: =10×565+36×1365= \frac{10 \times 5}{65} + \frac{36 \times 13}{65} =5065+46865= \frac{50}{65} + \frac{468}{65} =50+46865=51865= \frac{50 + 468}{65} = \frac{518}{65}.

Denominator: 2sinθ+tanθ=2(1213)+1252 \sin \theta + \tan \theta = 2 \left(\frac{12}{13}\right) + \frac{12}{5} =2413+125= \frac{24}{13} + \frac{12}{5} To add these fractions, find a common denominator, which is 13×5=6513 \times 5 = 65: =24×565+12×1365= \frac{24 \times 5}{65} + \frac{12 \times 13}{65} =12065+15665= \frac{120}{65} + \frac{156}{65} =120+15665=27665= \frac{120 + 156}{65} = \frac{276}{65}.

Step 4: Calculate the final value of the expression.

Value of expression = NumeratorDenominator=518/65276/65=518276\frac{\text{Numerator}}{\text{Denominator}} = \frac{518/65}{276/65} = \frac{518}{276}.

Step 5: Simplify the fraction.

Both the numerator and denominator are divisible by 2: 518÷2276÷2=259138\frac{518 \div 2}{276 \div 2} = \frac{259}{138}.

Conclusion:

The calculated value of the expression is 259138\frac{259}{138}. Comparing this result with the given options: A) 125\frac{12}{5} B) 513\frac{5}{13} C) 259102\frac{259}{102} D) 25965\frac{259}{65}

None of the provided options match the calculated value of 259138\frac{259}{138}. This indicates a potential error in the question or the options provided.