Question
Question: If $\sin \theta = \frac{12}{13}$ then the value of $\frac{2 \cos \theta + 3 \tan \theta}{\sin \theta...
If sinθ=1312 then the value of sinθ+tanθ+sinθ2cosθ+3tanθ is

512
135
102259
65259
No option matches the calculated value of 259/138
Solution
To find the value of the expression sinθ+tanθ+sinθ2cosθ+3tanθ, given sinθ=1312:
Step 1: Simplify the denominator. The denominator is sinθ+tanθ+sinθ. Combining the sinθ terms, we get 2sinθ+tanθ. So the expression becomes 2sinθ+tanθ2cosθ+3tanθ.
Step 2: Find the values of cosθ and tanθ. We are given sinθ=1312. Using the Pythagorean identity sin2θ+cos2θ=1: cos2θ=1−sin2θ cos2θ=1−(1312)2 cos2θ=1−169144 cos2θ=169169−144 cos2θ=16925 Taking the square root, cosθ=±16925=±135. Since no quadrant is specified, we assume θ is in the first quadrant where all trigonometric ratios are positive. So, cosθ=135.
Now, calculate tanθ: tanθ=cosθsinθ=5/1312/13=512.
Step 3: Substitute the values into the expression. Numerator: 2cosθ+3tanθ=2(135)+3(512) =1310+536 To add these fractions, find a common denominator, which is 13×5=65: =6510×5+6536×13 =6550+65468 =6550+468=65518.
Denominator: 2sinθ+tanθ=2(1312)+512 =1324+512 To add these fractions, find a common denominator, which is 13×5=65: =6524×5+6512×13 =65120+65156 =65120+156=65276.
Step 4: Calculate the final value of the expression. Value of expression = DenominatorNumerator=276/65518/65=276518.
Step 5: Simplify the fraction. Both the numerator and denominator are divisible by 2: 276÷2518÷2=138259.
Conclusion: The calculated value of the expression is 138259. Comparing this result with the given options: A) 512 B) 135 C) 102259 D) 65259
None of the provided options match the calculated value of 138259. This indicates a potential error in the question or the options provided.