Solveeit Logo

Question

Question: The value of $\lim_{x \to \infty} (\frac{2x-1}{2x+3})^{\frac{x+1}{2}}$ is:...

The value of limx(2x12x+3)x+12\lim_{x \to \infty} (\frac{2x-1}{2x+3})^{\frac{x+1}{2}} is:

A

e

B

0

C

1e2\frac{1}{e^2}

D

1e\frac{1}{e}

Answer

1e\frac{1}{e}

Explanation

Solution

The limit is of the form limx[f(x)]g(x)\lim_{x \to \infty} [f(x)]^{g(x)}, where f(x)=2x12x+3f(x) = \frac{2x-1}{2x+3} and g(x)=x+12g(x) = \frac{x+1}{2}. As xx \to \infty, limxf(x)=limx2x12x+3=limx21/x2+3/x=22=1\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{2x-1}{2x+3} = \lim_{x \to \infty} \frac{2 - 1/x}{2 + 3/x} = \frac{2}{2} = 1. As xx \to \infty, limxg(x)=limxx+12=\lim_{x \to \infty} g(x) = \lim_{x \to \infty} \frac{x+1}{2} = \infty. This is the 11^\infty indeterminate form.

The limit can be evaluated using the formula: limx[f(x)]g(x)=elimxg(x)[f(x)1]\lim_{x \to \infty} [f(x)]^{g(x)} = e^{\lim_{x \to \infty} g(x) [f(x) - 1]}

First, calculate f(x)1f(x) - 1: f(x)1=2x12x+31=2x1(2x+3)2x+3=2x12x32x+3=42x+3f(x) - 1 = \frac{2x-1}{2x+3} - 1 = \frac{2x-1 - (2x+3)}{2x+3} = \frac{2x-1 - 2x - 3}{2x+3} = \frac{-4}{2x+3}.

Next, calculate the limit of the exponent, L=limxg(x)[f(x)1]L = \lim_{x \to \infty} g(x) [f(x) - 1]: L=limx(x+12)(42x+3)L = \lim_{x \to \infty} \left(\frac{x+1}{2}\right) \left(\frac{-4}{2x+3}\right) L=limx4(x+1)2(2x+3)L = \lim_{x \to \infty} \frac{-4(x+1)}{2(2x+3)} L=limx2(x+1)2x+3L = \lim_{x \to \infty} \frac{-2(x+1)}{2x+3} L=limx2x22x+3L = \lim_{x \to \infty} \frac{-2x-2}{2x+3}

To evaluate this limit as xx \to \infty, divide the numerator and the denominator by the highest power of xx in the denominator, which is xx: L=limx2xx2x2xx+3xL = \lim_{x \to \infty} \frac{\frac{-2x}{x} - \frac{2}{x}}{\frac{2x}{x} + \frac{3}{x}} L=limx22/x2+3/xL = \lim_{x \to \infty} \frac{-2 - 2/x}{2 + 3/x} As xx \to \infty, 2/x02/x \to 0 and 3/x03/x \to 0. L=202+0=22=1L = \frac{-2 - 0}{2 + 0} = \frac{-2}{2} = -1.

The value of the original limit is eL=e1e^L = e^{-1}. e1=1ee^{-1} = \frac{1}{e}.

The final answer is 1e\frac{1}{e}.