Solveeit Logo

Question

Question: The determinant $\begin{vmatrix} -2a & a+b & c+a \\ a+b & -2b & b+c \\ c+a & b+c & -2c \end{vmatrix...

The determinant

2aa+bc+aa+b2bb+cc+ab+c2c\begin{vmatrix} -2a & a+b & c+a \\ a+b & -2b & b+c \\ c+a & b+c & -2c \end{vmatrix} is divisible

by

A

a+b

B

b+c

C

c+a

D

a+b+c

Answer

(A), (B), (C)

Explanation

Solution

We are given the determinant

D=2aa+bc+aa+b2bb+cc+ab+c2c.D = \begin{vmatrix} -2a & a+b & c+a \\ a+b & -2b & b+c \\ c+a & b+c & -2c \end{vmatrix}.

Step 1. Check the factor (a+b)(a+b):

Set a+b=0a+b=0 (i.e. a=ba=-b). For any value of cc, the entries in the first two rows become related. For example, choose a=1a=-1, b=1b=1 (so a+b=0a+b=0), and any cc (say c=2c=2). The determinant then becomes

D=2(1)=20c+a=2+(1)=102(1)=2b+c=1+2=3c+a=1b+c=32c=4.D=\begin{vmatrix} -2(-1)=2 & 0 & c+a=2+(-1)=1 \\ 0 & -2(1)=-2 & b+c=1+2=3 \\ c+a=1 & b+c=3 & -2c=-4 \end{vmatrix}.

A quick calculation shows D=0D=0. Hence, (a+b)(a+b) is a factor.

Step 2. Check the factor (b+c)(b+c):

Set b+c=0b+c=0 (i.e. c=bc=-b). For example, choose b=1b=-1, c=1c=1, and let a=2a=2. Then

D=2(2)=4a+b=2+(1)=1c+a=1+2=3a+b=12(1)=20 (since b+c=0)c+a=302(1)=2.D=\begin{vmatrix} -2(2)=-4 & a+b=2+(-1)=1 & c+a=1+2=3 \\ a+b=1 & -2(-1)=2 & 0\ (\text{since }b+c=0) \\ c+a=3 & 0 & -2(1)=-2 \end{vmatrix}.

The determinant computes to 0, so (b+c)(b+c) is a factor.

Step 3. Check the factor (c+a)(c+a):

Set c+a=0c+a=0 (i.e. c=ac=-a). For instance, choose a=1a=1, c=1c=-1 and b=2b=2. Then

D=2(1)=2a+b=1+2=30a+b=32(2)=4b+c=2+(1)=10b+c=12(1)=2.D=\begin{vmatrix} -2(1)=-2 & a+b=1+2=3 & 0 \\ a+b=3 & -2(2)=-4 & b+c=2+(-1)=1 \\ 0 & b+c=1 & -2(-1)=2 \end{vmatrix}.

Again, a quick calculation shows D=0D=0. Hence, (c+a)(c+a) is a factor.

Step 4. Check the factor (a+b+c)(a+b+c):

If we set a+b+c=0,a+b+c=0, then the determinant should be 0 if (a+b+c)(a+b+c) is a factor. However, testing with a=1a=1, b=2b=2, and c=3c=-3 (so 1+23=01+2-3=0), we get

D=232341216.D=\begin{vmatrix} -2 & 3 & -2 \\ 3 & -4 & -1 \\ -2 & -1 & 6 \end{vmatrix}.

A careful computation shows D0D\ne 0 (in fact, D=24D=24 in this case). Thus, (a+b+c)(a+b+c) is not a factor.


The determinant is divisible by (a+b)(a+b), (b+c)(b+c), and (c+a)(c+a).