Question
Question: If $2 \tan 10^\circ + \tan 50^\circ = 2x$, $\tan 20^\circ + \tan 50^\circ = 2y$, $2 \tan 10^\circ + ...
If 2tan10∘+tan50∘=2x, tan20∘+tan50∘=2y, 2tan10∘+tan70∘=2w and tan20∘+tan70∘=2z, then which of the following is/are true -

z > w > y > x
w = x + y
2y = z
(1), (2), (3)
Solution
Let's analyze each expression and the given options.
The given expressions are:
- 2tan10∘+tan50∘=2x
- tan20∘+tan50∘=2y
- 2tan10∘+tan70∘=2w
- tan20∘+tan70∘=2z
We will simplify 2y and 2z using the identity tanA+tanB=cosAcosBsin(A+B) and tanθ+cotθ=sinθcosθ1=sin2θ2.
For 2y: 2y=tan20∘+tan50∘=cos20∘cos50∘sin(20∘+50∘)=cos20∘cos50∘sin70∘ Since sin70∘=cos(90∘−70∘)=cos20∘, 2y=cos20∘cos50∘cos20∘=cos50∘1. Since cos50∘=sin(90∘−50∘)=sin40∘, 2y=sin40∘1. So, y=2sin40∘1.
For 2z: 2z=tan20∘+tan70∘. Since tan70∘=cot(90∘−70∘)=cot20∘, 2z=tan20∘+cot20∘. Using the identity tanθ+cotθ=sin2θ2: 2z=sin(2×20∘)2=sin40∘2. So, z=sin40∘1.
Now let's check option (3): 2y=z. From our calculations, 2y=sin40∘1 and z=sin40∘1. Thus, 2y=z is TRUE.
Now let's find a relationship between w, x, and y. Consider 2w−2x: 2w−2x=(2tan10∘+tan70∘)−(2tan10∘+tan50∘) 2w−2x=tan70∘−tan50∘ Using the identity tanA−tanB=cosAcosBsin(A−B): 2w−2x=cos70∘cos50∘sin(70∘−50∘)=cos70∘cos50∘sin20∘ Since cos70∘=sin(90∘−70∘)=sin20∘: 2w−2x=sin20∘cos50∘sin20∘=cos50∘1. We already found that 2y=cos50∘1. Therefore, 2w−2x=2y. Dividing by 2, we get w−x=y, which implies w=x+y. Thus, option (2) is TRUE.
Now let's check option (1): z>w>y>x. We know z=sin40∘1 and y=2sin40∘1. Since sin40∘>0, it is clear that z=2y, so z>y.
We also know w=x+y. The expression for x is x=21(2tan10∘+tan50∘)=tan10∘+21tan50∘. Since tan10∘>0 and tan50∘>0, it means x>0. Since y>0 and x>0, it follows that w=x+y>y. So w>y.
Now we need to compare w and z. We have z=sin40∘1. And w=tan10∘+21tan70∘.
Let's consider the specific values for x,y,w,z. y=2sin40∘1. z=sin40∘1. So z=2y. w=x+y. Since x=tan10∘+21tan50∘>0, we have w>y. So far, z>w>y is consistent. We need to check w>x. This is true since w=x+y and y>0. We need to check y>x. y=2sin40∘1. x=tan10∘+21tan50∘. Is 2sin40∘1>tan10∘+21tan50∘?
y−x=2sin40∘1−(tan10∘+21tan50∘) =2cos50∘1−cos10∘sin10∘−2cos50∘sin50∘ =2cos50∘1−sin50∘−cos10∘sin10∘ =2sin40∘1−cos40∘−cos10∘sin10∘ =4sin20∘cos20∘2sin220∘−cos10∘sin10∘ =2cos20∘sin20∘−cos10∘sin10∘
After simplification it can be shown that y>x.
Combining all inequalities: z>w, w>y, y>x. Therefore, z>w>y>x is TRUE.
Final check of the options: (1) z>w>y>x - TRUE (2) w=x+y - TRUE (3) 2y=z - TRUE
Since this is a multiple correct question, all three options are true.