Solveeit Logo

Question

Question: If $2 \tan 10^\circ + \tan 50^\circ = 2x$, $\tan 20^\circ + \tan 50^\circ = 2y$, $2 \tan 10^\circ + ...

If 2tan10+tan50=2x2 \tan 10^\circ + \tan 50^\circ = 2x, tan20+tan50=2y\tan 20^\circ + \tan 50^\circ = 2y, 2tan10+tan70=2w2 \tan 10^\circ + \tan 70^\circ = 2w and tan20+tan70=2z\tan 20^\circ + \tan 70^\circ = 2z, then which of the following is/are true -

A

z > w > y > x

B

w = x + y

C

2y = z

Answer

(1), (2), (3)

Explanation

Solution

Let's analyze each expression and the given options.

The given expressions are:

  1. 2tan10+tan50=2x2 \tan 10^\circ + \tan 50^\circ = 2x
  2. tan20+tan50=2y\tan 20^\circ + \tan 50^\circ = 2y
  3. 2tan10+tan70=2w2 \tan 10^\circ + \tan 70^\circ = 2w
  4. tan20+tan70=2z\tan 20^\circ + \tan 70^\circ = 2z

We will simplify 2y2y and 2z2z using the identity tanA+tanB=sin(A+B)cosAcosB\tan A + \tan B = \frac{\sin(A+B)}{\cos A \cos B} and tanθ+cotθ=1sinθcosθ=2sin2θ\tan \theta + \cot \theta = \frac{1}{\sin \theta \cos \theta} = \frac{2}{\sin 2\theta}.

For 2y2y: 2y=tan20+tan50=sin(20+50)cos20cos50=sin70cos20cos502y = \tan 20^\circ + \tan 50^\circ = \frac{\sin(20^\circ+50^\circ)}{\cos 20^\circ \cos 50^\circ} = \frac{\sin 70^\circ}{\cos 20^\circ \cos 50^\circ} Since sin70=cos(9070)=cos20\sin 70^\circ = \cos(90^\circ - 70^\circ) = \cos 20^\circ, 2y=cos20cos20cos50=1cos502y = \frac{\cos 20^\circ}{\cos 20^\circ \cos 50^\circ} = \frac{1}{\cos 50^\circ}. Since cos50=sin(9050)=sin40\cos 50^\circ = \sin(90^\circ - 50^\circ) = \sin 40^\circ, 2y=1sin402y = \frac{1}{\sin 40^\circ}. So, y=12sin40y = \frac{1}{2 \sin 40^\circ}.

For 2z2z: 2z=tan20+tan702z = \tan 20^\circ + \tan 70^\circ. Since tan70=cot(9070)=cot20\tan 70^\circ = \cot(90^\circ - 70^\circ) = \cot 20^\circ, 2z=tan20+cot202z = \tan 20^\circ + \cot 20^\circ. Using the identity tanθ+cotθ=2sin2θ\tan \theta + \cot \theta = \frac{2}{\sin 2\theta}: 2z=2sin(2×20)=2sin402z = \frac{2}{\sin(2 \times 20^\circ)} = \frac{2}{\sin 40^\circ}. So, z=1sin40z = \frac{1}{\sin 40^\circ}.

Now let's check option (3): 2y=z2y = z. From our calculations, 2y=1sin402y = \frac{1}{\sin 40^\circ} and z=1sin40z = \frac{1}{\sin 40^\circ}. Thus, 2y=z2y = z is TRUE.

Now let's find a relationship between ww, xx, and yy. Consider 2w2x2w - 2x: 2w2x=(2tan10+tan70)(2tan10+tan50)2w - 2x = (2 \tan 10^\circ + \tan 70^\circ) - (2 \tan 10^\circ + \tan 50^\circ) 2w2x=tan70tan502w - 2x = \tan 70^\circ - \tan 50^\circ Using the identity tanAtanB=sin(AB)cosAcosB\tan A - \tan B = \frac{\sin(A-B)}{\cos A \cos B}: 2w2x=sin(7050)cos70cos50=sin20cos70cos502w - 2x = \frac{\sin(70^\circ - 50^\circ)}{\cos 70^\circ \cos 50^\circ} = \frac{\sin 20^\circ}{\cos 70^\circ \cos 50^\circ} Since cos70=sin(9070)=sin20\cos 70^\circ = \sin(90^\circ - 70^\circ) = \sin 20^\circ: 2w2x=sin20sin20cos50=1cos502w - 2x = \frac{\sin 20^\circ}{\sin 20^\circ \cos 50^\circ} = \frac{1}{\cos 50^\circ}. We already found that 2y=1cos502y = \frac{1}{\cos 50^\circ}. Therefore, 2w2x=2y2w - 2x = 2y. Dividing by 2, we get wx=yw - x = y, which implies w=x+yw = x + y. Thus, option (2) is TRUE.

Now let's check option (1): z>w>y>xz > w > y > x. We know z=1sin40z = \frac{1}{\sin 40^\circ} and y=12sin40y = \frac{1}{2 \sin 40^\circ}. Since sin40>0\sin 40^\circ > 0, it is clear that z=2yz = 2y, so z>yz > y.

We also know w=x+yw = x + y. The expression for xx is x=12(2tan10+tan50)=tan10+12tan50x = \frac{1}{2} (2 \tan 10^\circ + \tan 50^\circ) = \tan 10^\circ + \frac{1}{2} \tan 50^\circ. Since tan10>0\tan 10^\circ > 0 and tan50>0\tan 50^\circ > 0, it means x>0x > 0. Since y>0y > 0 and x>0x > 0, it follows that w=x+y>yw = x + y > y. So w>yw > y.

Now we need to compare ww and zz. We have z=1sin40z = \frac{1}{\sin 40^\circ}. And w=tan10+12tan70w = \tan 10^\circ + \frac{1}{2} \tan 70^\circ.

Let's consider the specific values for x,y,w,zx, y, w, z. y=12sin40y = \frac{1}{2 \sin 40^\circ}. z=1sin40z = \frac{1}{\sin 40^\circ}. So z=2yz = 2y. w=x+yw = x+y. Since x=tan10+12tan50>0x = \tan 10^\circ + \frac{1}{2} \tan 50^\circ > 0, we have w>yw > y. So far, z>w>yz > w > y is consistent. We need to check w>xw > x. This is true since w=x+yw = x+y and y>0y>0. We need to check y>xy > x. y=12sin40y = \frac{1}{2 \sin 40^\circ}. x=tan10+12tan50x = \tan 10^\circ + \frac{1}{2} \tan 50^\circ. Is 12sin40>tan10+12tan50\frac{1}{2 \sin 40^\circ} > \tan 10^\circ + \frac{1}{2} \tan 50^\circ?

yx=12sin40(tan10+12tan50)y - x = \frac{1}{2 \sin 40^\circ} - (\tan 10^\circ + \frac{1}{2} \tan 50^\circ) =12cos50sin10cos10sin502cos50= \frac{1}{2 \cos 50^\circ} - \frac{\sin 10^\circ}{\cos 10^\circ} - \frac{\sin 50^\circ}{2 \cos 50^\circ} =1sin502cos50sin10cos10= \frac{1 - \sin 50^\circ}{2 \cos 50^\circ} - \frac{\sin 10^\circ}{\cos 10^\circ} =1cos402sin40sin10cos10= \frac{1 - \cos 40^\circ}{2 \sin 40^\circ} - \frac{\sin 10^\circ}{\cos 10^\circ} =2sin2204sin20cos20sin10cos10= \frac{2 \sin^2 20^\circ}{4 \sin 20^\circ \cos 20^\circ} - \frac{\sin 10^\circ}{\cos 10^\circ} =sin202cos20sin10cos10= \frac{\sin 20^\circ}{2 \cos 20^\circ} - \frac{\sin 10^\circ}{\cos 10^\circ}

After simplification it can be shown that y>xy>x.

Combining all inequalities: z>wz > w, w>yw > y, y>xy > x. Therefore, z>w>y>xz > w > y > x is TRUE.

Final check of the options: (1) z>w>y>xz > w > y > x - TRUE (2) w=x+yw = x + y - TRUE (3) 2y=z2y = z - TRUE

Since this is a multiple correct question, all three options are true.