Solveeit Logo

Question

Question: Let $\vec{a} = \alpha \hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} - \beta\hat{j} + 4\hat{k}$ ...

Let a=αi^+3j^k^\vec{a} = \alpha \hat{i} + 3\hat{j} - \hat{k}, b=3i^βj^+4k^\vec{b} = 3\hat{i} - \beta\hat{j} + 4\hat{k} and c=i^+2j^2k^\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k} where α,βR\alpha, \beta \in R be three vectors. If the projection of a\vec{a} on c\vec{c} is 5 units and b×c=6i^+10j^+7k^\vec{b} \times \vec{c} = -6\hat{i} + 10\hat{j} + 7\hat{k} then α+β=\alpha + \beta =

Answer

8

Explanation

Solution

  1. Calculate α\alpha using the projection condition: The projection of vector a\vec{a} on vector c\vec{c} is given by acc\frac{\vec{a} \cdot \vec{c}}{|\vec{c}|}. Given a=αi^+3j^k^\vec{a} = \alpha \hat{i} + 3\hat{j} - \hat{k} and c=i^+2j^2k^\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k}. The dot product ac\vec{a} \cdot \vec{c} is: ac=(α)(1)+(3)(2)+(1)(2)=α+6+2=α+8\vec{a} \cdot \vec{c} = (\alpha)(1) + (3)(2) + (-1)(-2) = \alpha + 6 + 2 = \alpha + 8 The magnitude of c\vec{c} is: c=12+22+(2)2=1+4+4=9=3|\vec{c}| = \sqrt{1^2 + 2^2 + (-2)^2} = \sqrt{1 + 4 + 4} = \sqrt{9} = 3 The projection is given as 5 units: α+83=5\frac{\alpha + 8}{3} = 5 α+8=15\alpha + 8 = 15 α=7\alpha = 7

  2. Calculate β\beta using the cross product condition: Given b=3i^βj^+4k^\vec{b} = 3\hat{i} - \beta\hat{j} + 4\hat{k} and c=i^+2j^2k^\vec{c} = \hat{i} + 2\hat{j} - 2\hat{k}. The cross product b×c\vec{b} \times \vec{c} is calculated as: b×c=i^j^k^3β4122\vec{b} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & -\beta & 4 \\ 1 & 2 & -2 \end{vmatrix} b×c=i^((β)(2)(4)(2))j^((3)(2)(4)(1))+k^((3)(2)(β)(1))\vec{b} \times \vec{c} = \hat{i}((-\beta)(-2) - (4)(2)) - \hat{j}((3)(-2) - (4)(1)) + \hat{k}((3)(2) - (-\beta)(1)) b×c=i^(2β8)j^(64)+k^(6+β)\vec{b} \times \vec{c} = \hat{i}(2\beta - 8) - \hat{j}(-6 - 4) + \hat{k}(6 + \beta) b×c=(2β8)i^+10j^+(6+β)k^\vec{b} \times \vec{c} = (2\beta - 8)\hat{i} + 10\hat{j} + (6 + \beta)\hat{k} We are given that b×c=6i^+10j^+7k^\vec{b} \times \vec{c} = -6\hat{i} + 10\hat{j} + 7\hat{k}. Equating the components: For the i^\hat{i} component: 2β8=6    2β=2    β=12\beta - 8 = -6 \implies 2\beta = 2 \implies \beta = 1 For the k^\hat{k} component: 6+β=7    β=16 + \beta = 7 \implies \beta = 1 The j^\hat{j} component 10=1010 = 10 is consistent. Thus, β=1\beta = 1.

  3. Calculate α+β\alpha + \beta: With α=7\alpha = 7 and β=1\beta = 1: α+β=7+1=8\alpha + \beta = 7 + 1 = 8