Solveeit Logo

Question

Question: $\int \frac{dx}{1+e^x}$...

dx1+ex\int \frac{dx}{1+e^x}

Answer

xln(1+ex)+Cx - \ln(1+e^x) + C

Explanation

Solution

To solve the integral dx1+ex\int \frac{dx}{1+e^x}, we can use a substitution method or algebraic manipulation.

Method 1: Algebraic Manipulation and Substitution

  1. Multiply numerator and denominator by exe^{-x}: I=dx1+ex=exdxex(1+ex)=exdxex+1I = \int \frac{dx}{1+e^x} = \int \frac{e^{-x} dx}{e^{-x}(1+e^x)} = \int \frac{e^{-x} dx}{e^{-x}+1}

  2. Perform a substitution: Let u=ex+1u = e^{-x}+1. Differentiate uu with respect to xx: du=exdxdu = -e^{-x} dx So, exdx=due^{-x} dx = -du.

  3. Substitute into the integral: I=duu=1uduI = \int \frac{-du}{u} = -\int \frac{1}{u} du

  4. Integrate with respect to uu: I=lnu+CI = -\ln|u| + C

  5. Substitute back u=ex+1u = e^{-x}+1: I=lnex+1+CI = -\ln|e^{-x}+1| + C Since ex>0e^{-x} > 0 for all real xx, ex+1e^{-x}+1 is always positive, so we can remove the absolute value signs: I=ln(ex+1)+CI = -\ln(e^{-x}+1) + C

  6. Simplify the expression: We can rewrite ex+1e^{-x}+1 as 1ex+1=1+exex\frac{1}{e^x}+1 = \frac{1+e^x}{e^x}. I=ln(1+exex)+CI = -\ln\left(\frac{1+e^x}{e^x}\right) + C Using logarithm properties, ln(ab)=lnalnb\ln\left(\frac{a}{b}\right) = \ln a - \ln b: I=(ln(1+ex)ln(ex))+CI = -(\ln(1+e^x) - \ln(e^x)) + C I=ln(1+ex)+ln(ex)+CI = -\ln(1+e^x) + \ln(e^x) + C Since ln(ex)=x\ln(e^x) = x: I=xln(1+ex)+CI = x - \ln(1+e^x) + C

Method 2: Substitution and Partial Fractions

  1. Perform a substitution: Let t=ext = e^x. Differentiate tt with respect to xx: dt=exdxdt = e^x dx So, dx=dtex=dttdx = \frac{dt}{e^x} = \frac{dt}{t}.

  2. Substitute into the integral: I=11+tdtt=1t(1+t)dtI = \int \frac{1}{1+t} \cdot \frac{dt}{t} = \int \frac{1}{t(1+t)} dt

  3. Decompose the integrand using partial fractions: We want to find AA and BB such that: 1t(1+t)=At+B1+t\frac{1}{t(1+t)} = \frac{A}{t} + \frac{B}{1+t} Multiply both sides by t(1+t)t(1+t): 1=A(1+t)+Bt1 = A(1+t) + Bt Set t=0t=0: 1=A(1+0)+B(0)    A=11 = A(1+0) + B(0) \implies A=1. Set t=1t=-1: 1=A(11)+B(1)    1=B    B=11 = A(1-1) + B(-1) \implies 1 = -B \implies B=-1. So, the partial fraction decomposition is: 1t(1+t)=1t11+t\frac{1}{t(1+t)} = \frac{1}{t} - \frac{1}{1+t}

  4. Substitute back into the integral and integrate: I=(1t11+t)dtI = \int \left(\frac{1}{t} - \frac{1}{1+t}\right) dt I=1tdt11+tdtI = \int \frac{1}{t} dt - \int \frac{1}{1+t} dt I=lntln1+t+CI = \ln|t| - \ln|1+t| + C

  5. Substitute back t=ext = e^x: I=lnexln1+ex+CI = \ln|e^x| - \ln|1+e^x| + C Since ex>0e^x > 0 and 1+ex>01+e^x > 0, we can remove the absolute value signs: I=ln(ex)ln(1+ex)+CI = \ln(e^x) - \ln(1+e^x) + C Since ln(ex)=x\ln(e^x) = x: I=xln(1+ex)+CI = x - \ln(1+e^x) + C

Both methods yield the same result.