Question
Question: If $x = b + c, y = c + a, z = a + b$, then find the value of $\frac{x^2 + y^2 + z^2 - xy - yz - zx}{...
If x=b+c,y=c+a,z=a+b, then find the value of a2+b2+c2−ab−bc−cax2+y2+z2−xy−yz−zx

A
0
B
1
C
2
D
3
Answer
1
Explanation
Solution
Given the expression a2+b2+c2−ab−bc−cax2+y2+z2−xy−yz−zx, where x=b+c, y=c+a, and z=a+b.
Let's substitute x=b+c, y=c+a, and z=a+b into the numerator:
x2+y2+z2=(b+c)2+(c+a)2+(a+b)2=b2+2bc+c2+c2+2ca+a2+a2+2ab+b2=2(a2+b2+c2)+2(ab+bc+ca)
xy+yz+zx=(b+c)(c+a)+(c+a)(a+b)+(a+b)(b+c)=bc+ab+c2+ca+ca+c2+a2+ab+ab+ac+b2+bc=a2+b2+c2+3(ab+bc+ca)
Numerator =x2+y2+z2−(xy+yz+zx)=2(a2+b2+c2)+2(ab+bc+ca)−(a2+b2+c2+3(ab+bc+ca))=a2+b2+c2−(ab+bc+ca)
Thus, the expression becomes:
a2+b2+c2−ab−bc−caa2+b2+c2−ab−bc−ca=1
Therefore, the value of the expression is 1.