Solveeit Logo

Question

Question: If the orthocenter and the circumcenter of a triangle are (-3, 5, 2), (6, 2, 5) then its centroid is...

If the orthocenter and the circumcenter of a triangle are (-3, 5, 2), (6, 2, 5) then its centroid is

Answer

(3, 3, 4)

Explanation

Solution

The orthocenter (O), centroid (G), and circumcenter (C) of a triangle are collinear. The centroid G divides the line segment joining the orthocenter O and the circumcenter C in the ratio 2:1, i.e., OG : GC = 2 : 1. Given: Orthocenter O=(3,5,2)O = (-3, 5, 2) Circumcenter C=(6,2,5)C = (6, 2, 5) Let the centroid be G=(x,y,z)G = (x, y, z).

Using the section formula for internal division, the coordinates of G are given by: G=(1Ox+2Cx1+2,1Oy+2Cy1+2,1Oz+2Cz1+2)G = \left( \frac{1 \cdot O_x + 2 \cdot C_x}{1+2}, \frac{1 \cdot O_y + 2 \cdot C_y}{1+2}, \frac{1 \cdot O_z + 2 \cdot C_z}{1+2} \right)

Substituting the given coordinates: x=1(3)+263=3+123=93=3x = \frac{1 \cdot (-3) + 2 \cdot 6}{3} = \frac{-3 + 12}{3} = \frac{9}{3} = 3 y=15+223=5+43=93=3y = \frac{1 \cdot 5 + 2 \cdot 2}{3} = \frac{5 + 4}{3} = \frac{9}{3} = 3 z=12+253=2+103=123=4z = \frac{1 \cdot 2 + 2 \cdot 5}{3} = \frac{2 + 10}{3} = \frac{12}{3} = 4

Therefore, the centroid is (3,3,4)(3, 3, 4).