Solveeit Logo

Question

Question: If $m, n$ and $p$ are integers, such that $\ell = \sin\frac{m\pi}{p}\sin\frac{n\pi}{p} + \sin\frac{2...

If m,nm, n and pp are integers, such that =sinmπpsinnπp+sin2mπpsin2nπp+sin3mπpsin3nπp++sin(p1)mπpsin(p1)nπp\ell = \sin\frac{m\pi}{p}\sin\frac{n\pi}{p} + \sin\frac{2m\pi}{p}\sin\frac{2n\pi}{p} + \sin\frac{3m\pi}{p}\sin\frac{3n\pi}{p} + \dots + \sin\frac{(p-1)m\pi}{p}\sin\frac{(p-1)n\pi}{p}, then \ell is equal to

A

-11, if m=151,n=25,p=22m=151, n=25, p=22

B

p2\frac{p}{2}, if mnm-n is divisible by 2p2p, and m+nm+n is NOT.

C

1, if m=125,n=34,p=79m=125, n=34, p=79

D

1, if both m+nm+n nor mnm-n is divisible by 2p2p.

Answer

A

Explanation

Solution

The given sum is =k=1p1sin(kmπp)sin(knπp)\ell = \sum_{k=1}^{p-1} \sin\left(\frac{km\pi}{p}\right) \sin\left(\frac{kn\pi}{p}\right) Using the product-to-sum identity sinAsinB=12[cos(AB)cos(A+B)]\sin A \sin B = \frac{1}{2}[\cos(A-B) - \cos(A+B)], we get: =k=1p112[cos(k(mn)πp)cos(k(m+n)πp)]\ell = \sum_{k=1}^{p-1} \frac{1}{2} \left[ \cos\left(\frac{k(m-n)\pi}{p}\right) - \cos\left(\frac{k(m+n)\pi}{p}\right) \right] =12[k=1p1cos(k(mn)πp)k=1p1cos(k(m+n)πp)]\ell = \frac{1}{2} \left[ \sum_{k=1}^{p-1} \cos\left(\frac{k(m-n)\pi}{p}\right) - \sum_{k=1}^{p-1} \cos\left(\frac{k(m+n)\pi}{p}\right) \right] Let S(θ)=k=1p1cos(kθπp)S(\theta) = \sum_{k=1}^{p-1} \cos\left(\frac{k\theta\pi}{p}\right).

We analyze S(θ)S(\theta):

  1. If θ\theta is a multiple of 2p2p, θ=2jp\theta = 2jp for some integer jj. S(θ)=k=1p1cos(2jkπ)=k=1p11=p1S(\theta) = \sum_{k=1}^{p-1} \cos(2jk\pi) = \sum_{k=1}^{p-1} 1 = p-1.

  2. If θ\theta is an even integer, but not a multiple of 2p2p. Let θ=2j\theta = 2j where jj is not a multiple of pp. Let z=ei2jπpz = e^{i\frac{2j\pi}{p}}. Then z1z \neq 1 and zp=ei2jπ=1z^p = e^{i2j\pi} = 1. S(θ)=Re(k=1p1zk)=Re(z(1zp1)1z)S(\theta) = \text{Re}\left(\sum_{k=1}^{p-1} z^k\right) = \text{Re}\left(\frac{z(1-z^{p-1})}{1-z}\right). Since zp=1z^p=1, k=0p1zk=0\sum_{k=0}^{p-1} z^k = 0. So k=1p1zk=z0=1\sum_{k=1}^{p-1} z^k = -z^0 = -1. S(θ)=Re(1)=1S(\theta) = \text{Re}(-1) = -1.

  3. If θ\theta is an odd integer. Let z=eiθπpz = e^{i\frac{\theta\pi}{p}}. Then zp=eiθπ=(eiπ)θ=(1)θ=1z^p = e^{i\theta\pi} = (e^{i\pi})^\theta = (-1)^\theta = -1 (since θ\theta is odd). S(θ)=Re(k=1p1zk)S(\theta) = \text{Re}\left(\sum_{k=1}^{p-1} z^k\right). We know k=0p1zk=1zp1z=1(1)1z=21z\sum_{k=0}^{p-1} z^k = \frac{1-z^p}{1-z} = \frac{1-(-1)}{1-z} = \frac{2}{1-z}. k=1p1zk=21z1\sum_{k=1}^{p-1} z^k = \frac{2}{1-z} - 1. S(θ)=Re(21z)1S(\theta) = \text{Re}\left(\frac{2}{1-z}\right) - 1. Let x=θπpx = \frac{\theta\pi}{p}. 1z=1cosxisinx1-z = 1 - \cos x - i\sin x. Re(21z)=Re(2(1cosx+isinx)(1cosx)2+sin2x)=Re(2(1cosx+isinx)22cosx)=Re(1+isinx1cosx)=1\text{Re}\left(\frac{2}{1-z}\right) = \text{Re}\left(\frac{2(1-\cos x + i\sin x)}{(1-\cos x)^2 + \sin^2 x}\right) = \text{Re}\left(\frac{2(1-\cos x + i\sin x)}{2-2\cos x}\right) = \text{Re}\left(1 + i\frac{\sin x}{1-\cos x}\right) = 1. So, S(θ)=11=0S(\theta) = 1 - 1 = 0.

Summary for S(θ)S(\theta):

  • S(θ)=p1S(\theta) = p-1 if θ\theta is a multiple of 2p2p.
  • S(θ)=1S(\theta) = -1 if θ\theta is an even integer not divisible by 2p2p.
  • S(θ)=0S(\theta) = 0 if θ\theta is an odd integer.

Evaluating the options:

(A) m=151,n=25,p=22m=151, n=25, p=22. mn=126m-n = 126. m+n=176m+n = 176. p=22p=22, 2p=442p=44. mn=126m-n = 126 is even, not divisible by 4444. S(126)=1S(126) = -1. m+n=176=4×44m+n = 176 = 4 \times 44, divisible by 2p2p. S(176)=p1=221=21S(176) = p-1 = 22-1 = 21. =12[S(126)S(176)]=12[121]=12[22]=11\ell = \frac{1}{2}[S(126) - S(176)] = \frac{1}{2}[-1 - 21] = \frac{1}{2}[-22] = -11. Option (A) is correct.

(B) If mnm-n is divisible by 2p2p, S(mn)=p1S(m-n)=p-1. If m+nm+n is not divisible by 2p2p: Case 1: m+nm+n is odd. S(m+n)=0S(m+n)=0. =12[(p1)0]=p12p2\ell = \frac{1}{2}[(p-1)-0] = \frac{p-1}{2} \neq \frac{p}{2}. Case 2: m+nm+n is even, not divisible by 2p2p. S(m+n)=1S(m+n)=-1. =12[(p1)(1)]=12[p]=p2\ell = \frac{1}{2}[(p-1)-(-1)] = \frac{1}{2}[p] = \frac{p}{2}. Since the outcome can be different, option (B) is incorrect.

(C) m=125,n=34,p=79m=125, n=34, p=79. mn=91m-n = 91 (odd). S(91)=0S(91)=0. m+n=159m+n = 159 (odd). S(159)=0S(159)=0. =12[00]=01\ell = \frac{1}{2}[0-0] = 0 \neq 1. Option (C) is incorrect.

(D) If m+nm+n and mnm-n are not divisible by 2p2p: Case 1: mnm-n and m+nm+n are both odd. S(mn)=0S(m-n)=0, S(m+n)=0S(m+n)=0. =12[00]=0\ell = \frac{1}{2}[0-0]=0. Case 2: mnm-n and m+nm+n are both even, not divisible by 2p2p. S(mn)=1S(m-n)=-1, S(m+n)=1S(m+n)=-1. =12[1(1)]=0\ell = \frac{1}{2}[-1-(-1)]=0. In both cases, =01\ell=0 \neq 1. Option (D) is incorrect.